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Preface

Over the last decades, roundabouts have been increasingly used in building new at-
grade intersections and in changing the layout of existing intersections. Therefore,
we decided that it would be useful to collect, in one volume, the methods and
procedures used to evaluate the operating conditions of this type of intersection.

The organization of this book is as follows:
Chapter 1 deals with the definitions of capacity, capacity indices for round-

abouts, and parameters linked to waiting phenomena at entries, i.e., delays and
queue lengths.

This is preceded by an introduction to the fundamental concepts associated with
statistical equilibrium and steady-state conditions. These general concepts of the
theory of systems and control are applied to roundabouts.

Chapter 2 starts with some examples of capacity formulas, selected from the
three types that are available in today’s scientific and technical literature. Then,
some criteria for taking into account the effects of pedestrian flows on entry and
exit capacities are presented. The remaining part of this chapter is dedicated to the
calculation procedures for flows entering the roundabout, to the capacity in case of
saturation or oversaturation of one or more entries, and to simple capacity and total
capacity.

Chapter 3 covers the analysis of waiting phenomena under steady-state and
transient conditions.

The material in Chap. 3 includes the standard key results of simple probabilis-
tic (Markovian) and deterministic queuing systems, as well as the results of some
special time-dependent solutions for waiting phenomena.

Chapter 3 has a more general scope because it presents results that may be used
both for roundabouts and for any at-grade intersection.

Chapter 4 deals with the application of the results and methods discussed in
the previous chapters for the evaluation of waiting times, queue lengths, and lev-
els of service of roundabouts. The calculation procedures illustrated are meant for
operating conditions characterized by undersaturated, saturated, or over-saturated
entries.

Chapter 4 ends with the determination of the level of service of a roundabout.
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viii Preface

All the chapters include worked examples that have been developed in sufficient
detail to explain as clearly as possible the formulas and the procedures presented in
the book.

We do hope that the expository format that we have used, which is characterized
by a plain style and supported by worked examples, will help the reader to easily
understand and be able to use the materials discussed in the book. We also hope that
this layout will help the highway traffic engineers analyze the operating conditions
of roundabouts.

Chapter 5 presents criteria to evaluate roundabout performance reliability. After
introducing and justifying the adoption of reserve of capacity and rate of capacity as
performance functions, the discussion is developed using a general calculation crite-
rion in which the values that are involved in the limit state service condition – traffic
demand and entry capacity – are random variables described by their probability
density functions, that is to say by their distribution functions.

A lower level criterion is then identified with which, on the basis of the estimation
of suitable statistics of the performance function, a reliability index is calculated that
can be compared to a prefixed reference value.

Trento, Italy Raffaele Mauro
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Chapter 1
Calculation of Roundabouts: Problem Definition

By analyzing roundabouts, we mean the determination of efficiency measures when
these intersections are to be used by a known traffic demand.

The indices that we generally take into account are:

Capacity and other related indicators
Queue lengths
Waiting times and delays

In traffic engineering, queue lengths, waiting times, and delay values are also
indicated as measures of effectiveness (MOE). Capacity determinations for entries
refer to capacity, capacity rate, and reserve capacity, which is expressed in both
absolute terms and in percentages. Capacity evaluations for the whole roundabout
refer to simple capacity, total capacity, the mean of reserve capacity, and the mean
of capacity rate at entries.

Queues result from the waiting phenomena that drivers may suffer at the entries,
and we estimate the length of the queues, measured by the number of vehicles, in
terms of means and percentiles.

Waiting times are the result of queuing up. They increase the traveling time
because of the intersections along the route.

Waiting times may refer to single users, as value or expected value1, or, with
appropriate means, to the whole intersection.

When we calculate capacity, queue lengths, and waiting times, we must specify,
for the observation period chosen, steadiness and variability of traffic demand and
the presence of one or more entries that are saturated or oversaturated.

This involves the analysis of the intersection with and without statistical equilib-
rium and, according to the state of the entries, the use of probabilistic, deterministic,
or time-dependent models.

1Expected value generally means the average of a random variable. The terms mean, average, and
mathematical expectation (for a random variable) are synonymous.

1R. Mauro, Calculation of Roundabouts, DOI 10.1007/978-3-642-04551-6_1,
C© Springer-Verlag Berlin Heidelberg 2010
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In the remaining part of this chapter, we will specify the assumptions and the
terms for calculating roundabouts, and we will also give specific definitions of the
performance indices that are briefly listed above.

In the following chapters some of the procedures used to calculate roundabouts
will be illustrated.

1.1 Statistical Equilibrium and Steady-State Conditions

The operational conditions in the time of a roundabout – as is the case for any uncer-
tain, real system – may be considered as a succession of states with probabilistic
characterization.

The description of this evolution requires, in its most complete forms, knowledge
of the probability associated with each state of the system.

This probability, for the same state may vary any time. In this case, we say that
the system exists in a transient condition.

If the probabilities of the states remain constant with time, we may say that the
system has reached a statistical equilibrium, and we denote it to be in a steady-state
condition.

It is now worth noting that, to evaluate if a system is at the steady-state condition,
we often choose not to assess the time-invariant state probability distribution.

Thus, the assessment of a steady-state condition is only about the constancy with
time of appropriate statistical values (e.g., means, variances, joint moments, and r-
order moments, etc.) associated with one or more variables that evolve randomly
and that are believed to be linked to the operational conditions of the whole.2

As we will see more clearly in the following chapters, on the basis of the above-
mentioned second procedure used to confirm a steady-state condition, a roundabout
is deemed to be at a steady-state condition when entering traffic demand does not
vary with time, and, additionally, when the traffic is systematically served by the
roundabout without the occurrence of the incoming traffic congestion phenomenon
i.e., average queue lengths and waiting times that are indefinitely increasing with
time.

We assume that all of the analyses performed below related to the operating con-
ditions of roundabouts are based on the assumption that the circulatory roadway and
the exits are always undersaturated. Therefore, the possible entry congestion must
be related to one or more saturated or oversaturated entries.3

Now, if i = 1; 2; ...; n is the number of the intersection legs and t is time, traf-
fic demand at the entries is generally expressed [2] by a vector (vector of demand
volumes)

2The two meanings correspond, in the random process theory, to steady-state conditions in
restricted sense (strong steady-state conditions) and in broad sense (weak steady-state conditions),
respectively. See, for example, [1].
3Evidently, it is assumed in this way that the absence of entry vehicular congestion is related to
undersaturated entries.
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Qe(t) = [Qei(t)] i = 1; 2; ...; n (1.1)

and by a matrix of traffic percentages (percentage origin/destination matrix)

PO/D(t) = [Pij(t)] i, j = 1; 2; ...; n (1.2)

The elements of the origin/destination matrix of traffic demand MO/D(t) from
entries “i” to exits “j” of the intersection

MO/D(t) = [Qij(t)] i, j = 1; 2; ...; n (1.3)

is obtained multiplying each element of the row “i” of matrix (1.2) by the
corresponding element Qei(t) of vector (1.1). (See example in Sect. 1.1.1).

That being stated, the condition for having a steady-state system, as previously
formulated, equals to the set of the following relationships

Qe(t + �t) = Qe(t) (1.4)

PO/D(t + �t) = PO/D(t) (1.5)

for any �t and

Qei(t) < Ci(t) i = 1; 2; ...; n (1.6)
for any “t”.

In Eq. (1.6) (entry undersaturation condition), Ci(t) represents entry capacities,
as defined in the following Sect. 1.2.

If Eqs. (1.4) and (1.5) are valid, we evidently also have

MO/D(t + �t) = MO/D(t) (1.7)

for any �t.
In current technical practice, a steady-state condition is considered to be

achieved, with undersaturated entries, if traffic demand at the intersection is con-
stant for a finite period of time T, but long enough4 to allow the stabilization of
the operative conditions of the roundabout around the constant mean values E [·] of
state variables.

In addition, the punctual values of state variables must be little dispersed around
the mean values E [·].

It is worth recalling that we have used here the queue lengths and waiting times
defined in the following paragraph Sect. 1.3 as state variables.

When Eqs. (1.4) and (1.5) are valid, and considering the preservation of flows at
the intersection, for the vector of the traffic flow in the circulatory roadway,

4For the duration of T (in s) we generally use the following indication (Morse), T >

max{1/ (
√

Ci/3600 −√
Qei/3600)2} , with Qei and Ci expressed in hourly volumes.
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Qc(t) = [Qci(t)] i = 1; 2; ...; n (1.8)

and for the vector of exiting traffic flows at legs

Qu(t) = Qui(t)] i = 1; 2; ...; n (1.9)

we have Qc(t + �t) = Qc(t) (1.10)

Qu(t + �t) = Qu(t) (1.11)

for any �t.
In the worked example shown in Sect. 1.1.1, we explain how to deduce the vec-

tors Qc(t) and Qu(t) starting with traffic demand at the intersection { Qe(t); PO/D(t)}.
In technical practice, as is well known, the geometrical and functional design

of a roundabout (or of any other infrastructural element) is generally conducted by
assuming that traffic demand is constant with time and with reference to the traffic
volume (peak-hour volume, PHV) related to a suitably chosen hour (such as, for
example, between the 30th and the 100th peak hour of the year) [2].

For a generic entry, to obtain the design traffic volume, the peak-hour volume is
divided by the peak hour factor, phf, to take into account traffic variations within the
peak hour.

Working in this way, the design traffic volume is equal to the equivalent hourly
traffic volume of the peak subhourly rate of flow [2].

However, strictly speaking, this procedure is not correct.
In fact, using the design traffic volume (obtained from the peak-hour traf-

fic demand) which is considered to be applied indefinitely (in accordance with
steady-state conditions), we have queue lengths, waiting times, and delays that are
considerably greater than the ones actually applied.

In addition, the values of these parameters tend to become infinite under crit-
ical conditions, that is when demand nears, equals, or exceeds the entry capacity
(saturated or oversaturated entry).

These circumstances cause an overdimensioning of the geometrical elements of
the roundabout and an unrealistic evaluation of the Level of Service.

In reality, traffic peaks and critical conditions occur for more or less long time
intervals, so that they are consequently finished with limited effects.

It is then suitable to base the evaluation on the demand flow trend inside the time
period considered and, in addition, on the effective duration of traffic peaks.

Thus, as we will see in Chap. 3, the transient conditions of the system must be
thoroughly analyzed.

1.1.1 A Worked Example on Traffic Demand at a Roundabout

Consider the roundabout in Fig. 1.1 and a steady-state condition in which traf-
fic demand at the intersection, indicated by Eqs. (1.1) and (1.2), is the following
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Fig. 1.1 Traffic demand at roundabout (volumes in veh/h)

(volumes are expressed in veh/h)

Qe ≡ [
Qe1 Qe2 Qe3 Qe4

] ≡ [
350 400 300 450

]

PO/D ≡

⎡

⎢⎢
⎣

P11 P12 P13 P14
P21 P22 P23 P24
P31 P32 P33 P34
P41 P42 P43 P44

⎤

⎥⎥
⎦ ≡

⎡

⎢⎢
⎣

0 0.32 0.41 0.27
0.25 0 0.31 0.44
0.28 0.34 0 0.38
0.40 0.32 0.28 0

⎤

⎥⎥
⎦

Multiplying each element in row “i” of the matrix PO/D by the corresponding Qei
of vector Qe,we have the origin/destination matrix MO/D for the roundabout. (The
terms are approximated to integer values.)

MO/D ≡

⎡

⎢⎢
⎣

Q11 Q12 Q13 Q14
Q21 Q22 Q23 Q24
Q31 Q32 Q33 Q34
Q41 Q42 Q43 Q44

⎤

⎥⎥
⎦ ≡

⎡

⎢⎢
⎣

0 112 144 94
100 0 124 176
84 102 0 114
180 144 126 0

⎤

⎥⎥
⎦
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Fig. 1.2 Traffic flows at the
roundabout for the entry “i”

From matrix MO/D, due to traffic preservation on the circulatory roadway, it is
possible to deduce (See Fig. 1.2) the volumes Qci in front of the entries and the vol-
umes Qui exiting the roundabout with the following straightforward relationships:

Qc1 = Q42 + Q43 + Q32 = 144 + 126 + 102 = 372 veh/h
Qc2 = Q13 + Q14 + Q43 = 144 + 94 + 126 = 364 veh/h
Qc3 = Q24 + Q21 + Q14 = 176 + 100 + 94 = 370 veh/h
Qc4 = Q31 + Q32 + Q21 = 84 + 102 + 100 = 286 veh/h
Qu1 = Q21 + Q31 + Q41 = 100 + 84 + 180 = 364 veh/h
Qu2 = Q12 + Q32 + Q42 = 112 + 102 + 144 = 358 veh/h
Qu3 = Q13 + Q23 + Q43 = 144 + 124 + 126 = 394 veh/h
Qu4 = Q14 + Q24 + Q34 = 94 + 176 + 114 = 384 veh/h

In the end, vectors (1.8) and (1.9) are, respectively:

Qc ≡ [
372 364 370 286

]

Qu ≡ [
364 358 394 384

]

Since the example is conducted assuming the system to be in a steady-state
condition, and, therefore, traffic demand is constant with time and the entries are
undersaturated, vectors indicating the different ways to express demand coincide
with the flow vectors that are actually traveling through the intersection: in this case,
therefore, Qe indicates the traffic entering the roundabout, Qc indicates circulating
traffic in front of the entries, and Qu indicates the exiting traffic.

However, from now on, corresponding volumes of demand and the flows in tran-
sit will be indicated with the same symbol; the meaning of the symbol, when it is
not explicitly indicated, can be easily inferred from the context.
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Evidently, calculation of the flows Qci and Qui may be conducted without the
determination of matrix MO/D by using the elements of vector Qe and matrix PO/D
directly.

Therefore, due to the preservation of flows in the circulatory roadway and assum-
ing, for the sake of simplicity, the flows that have the same leg as origin and
destination to be null since they are generally very small, we have the following
relationships:

Qc1 = Q42 + Q43 + Q32 = (P42 + P43) Qe4 + P32 Qe3
Qc2 = Q13 + Q14 + Q43 = (P13 + P14) Qe1 + P43 Qe4
Qc3 = Q24 + Q21 + Q14 = (P24 + P21) Qe2 + P14 Qe1
Qc4 = Q31 + Q32 + Q21 = (P31 + P32) Qe3 + P21 Qe2

(1.12)

Qu1 = Q21 + Q31 + Q41 = P21 Qe2 + P31 Qe3 + P41 Qe4
Qu2 = Q12 + Q32 + Q42 = P12 Qe1 + P32 Qe3 + P42 Qe4
Qu3 = Q13 + Q23 + Q43 = P13 Qe1 + P23 Qe2 + P43 Qe4
Qu4 = Q14 + Q24 + Q34 = P14 Qe1 + P24 Qe2 + P34 Qe3

(1.13)

Therefore, it is easy to determine, starting with traffic demand, the circulatory
roadway volumes and those traveling towards the exits for a roundabout with a
number of legs i = 1, 2,. . ., any n.

Values of the circulating flows Qci in front of each entry i, i ∈[1,. . ., n] (numbered
in an anti-clockwise manner) are

Qc,1 = Qe,n(Pn,2 + ... + Pn,n−1) + Qe,n−1(Pn−1,2 + ... + Pn−1,n−2) + ... + Qe,3P3,2
......

Qc,n = Qe,n−1(Pn−1,1 + ... + Pn−1,n−2) + Qe,n−2(Pn−2,2 + ... + Pn−2,n−3) + ... + Qe,2P2,1
(1.14)

Qu,1 = Qe,2P2,1 + ... + Qe,nPn,1
......

Qu,n = Qe,1P1,n + ... + Qe,n - 1Pn - 1,n

(1.15)

1.2 Capacity and Capacity Indices

Capacity C of an entry is defined as the smallest value of the leg flow that causes the
permanent presence of vehicles queuing up to enter.

To calculate C, the roundabout is considered as a series, along the development
of the junction, of T intersections, with yielding to the circulating flows with only
one interaction i.e., the mutual contribution to the formation of circulating flows that
affect each entry as conflicting flows.

For a roundabout entry, capacity C may be expressed in the most general way as

C = C(G̃;Qd;τ̃;S̃) (1.16)
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where

G̃ is a set of variables representing the geometrical layout of the roundabout
(e.g., entry width and central island radius) or its configuration (e.g., number
of circulatory roadway lanes and number of entry lanes);

Qd is the traffic flow that disturbs the traffic entering the roundabout; Qd is the
function of the entry flows (1.1) in general, by means of the circulating flows
Qc (1.8) and the exiting flows Qu (1.9) (See Fig. 1.1);

τ̃ is a set of psycho-technical times, relative to user behavior i.e., generally,
critical gap Tc and follow-up time Tf

5;
S̃ is a set of numerical constants that result from the calibration process of the

capacity formula.

A capacity formula is generally obtained in two ways [4].

a) It may be obtained by the calibration with empirical data of queuing theory
models, i.e. models based on the gap-acceptance theory.

b) It may be obtained with empirical regression techniques applied to sampling
traffic data without using the queuing theory.

However, specifying Eq. (1.16), today’s available6 capacity formulas may be
classified into the following three types:

a) the roundabout is characterized only by its configuration, represented by the
number of circle lanes and leg lanes;

b) the geometric design is taken into account at a reasonable level of detail;
c) user behavior with critical gap Tc and follow-up time Tf is taken into account,

along with geometric aspects.

Examples of these three types of capacity formulas are dealt with in Chap. 2.
According to some capacity formulas, the disturbing flows Qd are equal to cir-

culating flows Qc; according to other formulas, they are equal to appropriate linear
combinations of the flows Qc and Qu.

Starting with capacity Ci of an entry “i”, we will now define further capacity
indices that are frequently used to characterize roundabout operational conditions:

– Reserve Capacity (RC)i, which is equal to the difference between capacity Ci and
traffic demand Qei at an entry

5Tf is also called move-up time. For the definition of Tc and Tf, see, for example [3].
6In the international literature, as far as we know, 32 formulations of capacity have been found,
eight of which are German (1992–2007), four are Swiss (1989–2006), two are American (1997–
2000), one is English (1980); three are French (1988–1997), three are Dutch (1992–1999); one
is Polish (1996), one is Swedish (1996), one is Norwegian (1985), one is Finnish (2004), one is
Danish (1999), one is Israeli (1997), two are Australian (1989–1998), two are Austrian (1997–
2001), and one is Portuguese (1996).
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(RC)i = Ci − Qei (1.17)

– Percentage Reserve Capacity (RC%)i, given by

(RC%)i = (RC)i

Ci
· 100 = Ci − Qei

Ci
· 100 (1.18)

– Percentage Capacity Rate (CR%)i, equal to 100 times the traffic intensity ρi =
Qei/Ci

(CR%)i = Qei

Ci
· 100 (1.19)

We will now give further definitions of capacity related to the entire roundabout:

1) Simple Capacity (SC): with reference to a given traffic demand at the intersec-
tion, we define simple capacity SC as the first capacity value that is recorded at
an entry for a uniform increase in the flows that make up the demand. In other
words, when we calculate simple capacity, we also determine for a given vector
(1.1) and matrix (1.2) the value of the maximum entering flow on each leg when
one of the entry, in the uniform evolution of the system, becomes saturated.

2) Total Capacity (TC): we define total capacity TC with respect to a given percent-
age distribution of entering traffic (See matrix (1.2)) the sum of the flows from
each entry (Qei) that are simultaneously equal to capacity (Qei = Ci).

Therefore, Total Capacity indicates, for a given distribution of demand at the
intersection (i.e., for a given determination of (1.2)), a concise measurement of the
roundabout limited ability to serve traffic when each leg is saturated.

The procedures to determine SC and TC will be illustrated in Chap. 2.
Finally, capacity indices (absolute and in percentage) for the entire roundabout

may be defined as the weighted means on the flows of the determinations obtained,
respectively, with Eqs. (1.17), (1.18), and (1.19) for each roundabout entry.

1.3 Delays and Queue Lengths

Delays at intersections along the route contribute to lost time during the travel.
Figure 1.3 shows the components that make up the delay due to the presence of

a roundabout along the route.
The simplified time-distance diagram shown in Fig. 1.4 may replace the time-

distance diagram shown in Fig. 1.3 in order to evaluate delays.
In Fig. 1.4, the horizontal line ws indicates, using the term of the queuing theory

[5], the time spent in the system or the delay of the vehicle in the sense of traffic
engineering.
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Fig. 1.3 Delays due to the presence of a roundabout along the route

Fig. 1.4 Simplified space versus time diagram

It results from the addition of two rates:

• queue waiting time wc, i.e., the time that a single vehicle spends from the moment
it joins the queue till it gets to the head of the queue (i.e., to the yielding line);

• service time Ts, which is the time between the moment the vehicle reaches the
head of the queue (i.e., the yielding line) and the moment it enters the circulatory
roadway to perform the desired maneuver.
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Finally,

ws = wc + Ts (1.20)

Now, with the model generally used to obtain the delay w (total delay)
(See Fig. 1.4), the times Tdec and Tacc must be considered together with ws.
They indicate the deceleration phase when approaching the intersection and the
acceleration phase when crossing and exiting the intersection, respectively.

In the roundabout of Fig. 1.4, Tdec = t2 – t1, and Tacc = t4 – t3.
Thus, the delay at the intersection w, is function, among other things, of

w = f(ws;Tdec;Tacc;(.);(.)...) (1.21)

In conclusion, total delay is the difference between the traveling time spent in
presence of the intersection and the traveling time that would be spent in absence of
the intersection.

The difference wg

wg = w − ws (1.22)

is called geometric delay.
The determination of w is used, for example: (a) to evaluate costs related to traffic

assignment to road networks; (b) to make the comparative analysis used to change
the layout of an intersection; (c) to compare roundabouts of different geometry.

To evaluate the quality of circulation at given intersections, it is, instead,
sufficient to calculate only the time spent in the system ws provided by Eq. (1.20).

We will henceforth analyze only ws. 7

However, to calculate geometric delay, see, for example [6].
Ls at an entry indicates the number of waiting vehicles in the system, i.e.,

including the vehicle in service8 (See Fig. 1.5).
The length of the queue Lc is made up, instead, of the number of vehicles waiting

behind the vehicle in service, e.g., in the case of a roundabout with single-lane
entries, Lc= Ls – 1.

Ls is the number of users in the system.
ws, wc, Ls, and Lc are random variables.

7In technical practice, but sometimes also in scientific literature, “delay” does not mean only w
given by Eq. (1.21), but also ws expressed by Eq. (1.20) that, as we have already pointed out, is
part of w and is relative only to the time spent queuing up at the beginning of the maneuver to enter
the circle.
8The vehicle in service is the first vehicle in the queue, i.e., the nearest to the yielding line, waiting
to enter the circle.
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Fig. 1.5 Number of vehicles in the system and number of vehicles in the queue

To determine the effectiveness measures of roundabouts, we need the mean val-
ues E[ws] of ws and E[wc] of wc and, for Ls and Lc, in addition to the means E[Ls]
and E[Lc], we need suitable percentiles Ls,p and Lc,p. The order p of the percentiles
may be established in relation to the particular problem under examination.

As we have already pointed out in Sect. 1.1, the determinations of E[ws], E[wc],
E[Ls], E[Lc], Ls,p, Lc,p require the characterization of the state of the system in terms
of the presence or absence of steady-state conditions.

In a steady-state condition, the mean (average) E[·] is a mathematical expectation
of a random variable.

To define, instead, the mean in the absence of steady-state conditions, it is neces-
sary to take into account that, under these conditions, the queue mean length varies
according to the change of the system conditions (traffic demand variation and/or
entry states).
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In particular, if the absence of a steady-state condition is connected to saturation
or oversaturation at the entry of concern for a period T, at the beginning of T, queues
shorter than those at the end of the same period will be recorded.

For the time spent in the system and waiting time in the queue, it follows that
the same behavior, i.e. a shorter duration at the beginning of T compared to that
recorded at its end, may be recorded.

Thus, for example, the average waiting time in the queue E[wc] related to T is
defined as

E[wc] = wc(t0) + wc(t)

2
(1.23)

where wc(t0) and wc(t) are the waiting times in the queue of two vehicles joining
the queue at the beginning t0 and at the end t = t0 + T of the observation period T.

Equation (1.23) may be also considered as an estimate of the time that an user
may spend, on average, in the queue when he or she arrives at half of the period of
entry saturation or oversaturation.

In addition, it is important for practical applications to evaluate the percentile Ls,p
of the number of users in the system at the end of T, for the situations connected to
saturated or oversaturated entries.

The estimation of a suitable Ls,p in an entry to a roundabout is an essential task
for the following reasons:

a) it is an indicator of traffic quality.
b) it is useful to design and validate the geometric layout of the intersection.
c) it helps to prevent traffic jams into upstream intersections.

Chapter 3 will be dedicated to the criteria to calculate the waiting phenomena
parameters at roundabout entries.
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Chapter 2
Capacity Evaluation

In the previous Sect. 1.2, the definitions of capacity C of an entry, simple capacity
SC, and whole or total capacity TC were discussed.

The section also contains further definitions regarding reserve capacity indices
(absolute RC, percentage RC%, and percentage Capacity Rate CR%).

As we will see in the following Sect. 2.1, the determination of Capacity
Ci at the entries “i” is easy if the entries are all at undersaturation conditions(
(RC)i = Ci − Qei > 0, i.e., ρi = Qei

/
Ci < 1 ∀i

)
.

On the other hand, if one or more of the entries “i” are not undersaturated, the
determination of their capacities Ci is not straightforward. The determinations of
simple capacity SC and total capacity TC are not straightforward.

In all these cases, it is necessary to use specific, iterative calculation methods,
which will be dealt with in the following Sects. 2.5 and 2.6.

2.1 Capacity Calculation at Steady-State Conditions

As already described, by specifying Eq. (1.16) in Chap. 1, the capacity formulas
that are currently available may be classified into three types:

a) the roundabout is characterized only by its configuration, represented by the
number of circle lanes and leg lanes;

b) the roundabout geometry is taken into account in somewhat detailed way;
c) we take into account, together with geometric aspects, the users’ behaviors

thanks to psycho-technical times Tc, critical gap, and follow-up time Tf.

To provide some examples of the type of relationships of the above-mentioned
classifications (a; b; c), six capacity formulas are now presented and implemented.

Two formulas of type (a) that were developed by Brilon et al. (Germany) and
by Bovy et al. (Switzerland) are presented in which the roundabout configuration
is therefore represented by the number of lanes at the entries and in the circle. In
addition, according to Brilon’s formula, the disturbing flow Qd is represented only

15R. Mauro, Calculation of Roundabouts, DOI 10.1007/978-3-642-04551-6_2,
C© Springer-Verlag Berlin Heidelberg 2010
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by the circulating flow Qc in front of the entries, whereas, according to Bovy’s
formula, Qd is a linear combination of Qc and exiting traffic Qu.1

The third formula presented, developed by TRRL (United Kingdom), belongs
to set (b) and requires, with respect to the two previous cases, a more detailed
characterization of the roundabout geometry and uses the size of the main plani-
metric elements of the roundabout as input; in this formula, the disturbing flow is
represented only by the circulating flow Qc.

The fourth formula presented, the GIRABASE procedure (France), belongs to
set (c). In fact, it is necessary to determine some geometric values of the roundabout
and to use a pre-fixed follow-up time value Tf to implement the formula. In this
case, the disturbing flow is represented by a linear combination of the circulating
flow with the exiting flow.

The fifth formula, developed by Brilon and Wu (Germany), belongs to set (c),
and it considers capacity as a function of the roundabout configuration, rendered
in terms of number of lanes at the entries and in the circle and as function of the
users’ psycho-technical attitudes, expressed by determining the critical gap Tc and
follow-up time Tf

2 values.
In this case, Qd is set equal to Qc.
The sixth formula also belongs to set (c). It is included in the Highway Capacity

Manual HCM 2002 [1].
The capacity formulas available in the literature generally express entering flows

in passenger car unities (pcu/h), and, using the same measure, entry capacities are
obtained.

To express flows Qe in pcu/h, vehicles other than passenger cars are generally
treated as follows: 1 truck, bus = 1.5 pcu; 1 truck + trailer = 2.0 pcu; 1 motorcycle
= 0.5 pcu; 1 bicycle = 0.5 pcu.

When formulas make use of the number of lanes, one should reason as follows.
According to regulations that are largely accepted, circle lanes must not have road
markings; for this reason, the phrase “number of circle lanes” is meant to be the
number of circulating vehicles rows that can be accommodated on the circulatory
roadway.

In all the following examples, we assume that all the intersections under
examination are at steady-state conditions.

We wish to recall (see Sect. 1.1) that a steady-state condition, as we mean it
here, is achieved if entries are undersaturated and traffic demand at each leg remains
constant for a time period T of a suitable size. In other words, T must be long enough
to allow the operating conditions of the intersection to become steady with constant
mean values of state variables. In addition, the punctual values of state variables
must be little dispersed around the mean values.

1 For Qe, Qu, and Qc, see Fig. 1.2 in Chap. 1.
2 To evaluate Tc and Tf, see, for example, [3].
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2.1.1 Brilon-Bondzio Formula (Germany)

The capacity of an entry is represented by the simple linear relationship [2, 3]

C = A − B · Qc
(
pcu

/
h
)

(2.1)

where A and B are obtained from Table 2.1, depending on the numbers of entry and
circle lanes.

Equation (2.1) is valid for roundabouts with external diameters Dext that range
from 28 to 100 m.

In Eq. (2.1), the disturbing traffic Qd coincides with the circulating flow Qc in
front of the entry for which C is determined.

Figure 2.1 shows the representation of Eq. (2.1) for all the geometric configura-
tions for which it is valid.

As an example, consider a four-legged roundabout with a double-lane circle and
double-lane entries.

Table 2.1 Parameters values for Brilon-Bondzio capacity formula

Circle lane number Entry lane number A B Sample size

3 2 1409 0.42 295
2 2 1380 0.50 4574
2–3 1 1250 0.53 879
1 1 1218 0.74 1504

Fig. 2.1 Capacity C versus circulating flow Qc according to Brilon-Bondzio capacity formula
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The entering flow vector (pcu/h) is Qe = [322, 252, 329, 408].
The origin/destination matrix relative to the time considered is the following (the

traffic volumes in matrix MO/D are expressed in pcu/h):

MO/D ≡

⎡

⎢⎢
⎣

0 82 116 124
74 0 92 86
106 96 0 127
128 141 139 0

⎤

⎥⎥
⎦

From the entering flows vector Qe, with Eqs. (1.12) and (1.13) in Chap. 1, we
obtain the exiting flows (Qu) and circulating flows in front of each entry (Qc) for
each leg, i.e., i = 1, 2, 3, 4, of the roundabout:

Qu1 = 308 pcu/h Qc1 = 376 pcu/h

Qu2 = 319 pcu/h Qc2 = 379 pcu/h

Qu3 = 347 pcu/h Qc3 = 284 pcu/h

Qu4 = 337 pcu/h Qc4 = 276 pcu/h

On the basis of Eq. (2.1), with A = 1380 and B = 0.50 (See Table 2.1), the
capacities for each entry are:

C1 = 1380 − 0.5 · Qc1 = 1192 pcu/h
C2 = 1380 − 0.5 · Qc2 = 1190 pcu/h
C3 = 1380 − 0.5 · Qc3 = 1238 pcu/h
C4 = 1380 − 0.5 · Qc4 = 1242 pcu/h

Then, we evaluate the capacity indices for each entry (See Sect. 1.2).
The reserve capacities are:

(RC)1 = C1 − Qe1 = 1192 − 322 = 870 pcu/h
(RC)2 = C2 − Qe2 = 1190 − 252 = 938 pcu/h
(RC)3 = C3 − Qe3 = 1238 − 329 = 909 pcu/h
(RC)4 = C4 − Qe4 = 1242 − 408 = 834 pcu/h

Percentage Capacity Rates (CR%) for each entry are

(CR% )1 = (Qe1/C1) · 100 = (322/1192) 100 = 27.0%
(CR% )2 = (Qe2/C2) · 100 = (252/1190) 100 = 21.2%
(CR% )3 = (Qe3/C3) · 100 = (329/1238) 100 = 26.6%
(CR% )4 = (Qe4/C4) · 100 = (408/1242) 100 = 32.9%
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For the roundabout as a whole, the following mean values are obtained

RC=

n∑

i=1
(RC)i · Qei

n∑

i=1
Qei

= 870 · 322 + 938 · 252 + 909 · 329 + 834 · 408

322 + 252 + 329 + 408
∼= 881 pcu/h

(CR% ) =

n∑

i=1
(CR% )i · Qei

n∑

i=1
Qei

=

= 27.0% · 322 + 21.2% · 252 + 26.6% · 329 + 32.9% · 408

322 + 252 + 329 + 408
∼= 27.6%

2.1.2 Bovy et al. Formula (Switzerland)

This formula is recommended for roundabouts (to be used in urban and suburban
environments) with a non mountable central island, of small dimensions (maximum
internal diameter Dint = 18 – 20 m) [3]. The circle external diameter Dext varies
generally from 24 to 34 m, and there are flared entries, i.e., there are more lanes
next to the stop line to make the choice of the desired direction easier.

An entry capacity is determined with the relationship:

C = 1

γ
· (1500 − 8

9
· Qd) (pcu/h) (2.2)

where γ is a parameter that allows taking into account the number of entry lanes,
and its value is:

– γ = 1 for one lane;
– γ = 0.6–0.7 m for two lanes (according to smaller or larger entry dimensions),

and it is generally set at 0.667;
– γ = 0.5 for three lanes.

Qd is the disturbing traffic determined as:

Qd = α · Qu + β · Qc (pcu/h) (2.3)

where (See Fig. 2.2):

Qu = exiting traffic;
Qc = circulating traffic in front of the exit being considered.
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Fig. 2.2 Distance � between
the exiting conflicting point
(A) and entering point (B)

Coefficients α and β are related to the geometry of the roundabout and take into
account the distance � between the exiting conflicting points (A) and entering points
(B) that are conventionally identifiable on the circle (Fig. 2.2) and the number of
circular lanes, respectively.

Due to the ability to simulate the roundabout, it was possible to establish that,
in accordance with the intuitively obvious inverted proportionality relationship
between � and the percentage disturb due to the vehicles exiting the intersection, α

decreases with � until, for � > 28 m, the exiting vehicles do not disturb the entering
vehicles (α = 0).

Figure 2.3 shows three behaviors of the value α as a function of the distance �.
The line “a” is relative to a circle flow speed of 20–25 km/h; lines “b” and “c” border
the band above and below “a” when V > 20–25 km/h (greater disturb) and when V
< 20–25 km/h (smaller disturb), respectively.

Fig. 2.3 Values of parameter
α versus the distance �

between the exiting and
entering conflicting points
shown in Fig. 2.2
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For β, which takes into account the reduction effect that the presence of more
than one circle lane has on the conflicting flow caused by the circulating traffic, the
following values are provided: β = 0.9–1.0 for one lane; β = 0.6–0.8 for two lanes;
and β = 0.5–0.6 for three lanes.

To calculate the number of equivalent passenger car units (pcu), the following
values are suggested:

one bike or motorbike in the circle = 0.8 pcu
one entering bike or motorbike = 0.2 pcu
one heavy vehicle or bus = 2.0 pcu

The Swiss Standards on roundabouts use the formula proposed by Bovy et al. and
use the following two capacity indices as the roundabout efficiency indicators. The
calculation of these indices and their meanings are straightforward, and they must
always be determined together. The calculations are performed as shown below:

– Capacity Rate used at entries (CRUe):

CRUe = (γ · Qe/Ce) · 100 (%) (2.4)

– Capacity Rate used at the conflicting point (CRUc):

CRUc = [(γ · Qe + 8/9 · Qd)/1500] · 100 (%) (2.5)

Now, we present an example of implementation of the procedure for the round-
about examined in the previous Sect. 2.1.1 (a four-legged roundabout with a
double-lane circle and double-lane entries). We assume that the distance � between
the conflicting points is equal to 20 m in front of each leg.

The traffic data are the same as the traffic data used in the example in Sect. 2.1.1.
The circle flow speed is assumed to be 20–25 km/h. The value of the parameter α

is determined from the diagram shown in Fig. 2.3, along the line “a”, as a function
of the distance � = 20 m for all the legs. The result is α = 0.14.

Since the circle has two lanes, β is equal to 0.7.
Thus, disturbing flows in front of the legs can be determined in the following

way:

Qd1 = α · Qu1 + β · Qc1 = 0.14 · 308 + 0.7 · 376 ∼= 307 pcu/h
Qd2 = α · Qu2 + β · Qc2 = 0.14 · 319 + 0.7 · 379 ∼= 311 pcu/h
Qd3 = α · Qu3 + β · Qc3 = 0.14 · 347 + 0.7 · 284 ∼= 249 pcu/h
Qd4 = α · Qu4 + β · Qc4 = 0.14 · 337 + 0.7 · 276 ∼= 242 pcu/h
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Therefore, with Eq. (2.2), we can determine the capacity values at entries, using
γ = 0.667 for all (because of double-lane entries), as shown below:

C1 = 1/γ · (1500 − 8/9 · Qd1) = 1/0.667 · (1500 − 8/9 · 307) ∼= 1840 pcu/h
C2 = 1/γ · (1500 − 8/9 · Qd2) = 1/0.667 · (1500 − 8/9 · 311) ∼= 1834 pcu/h
C3 = 1/γ · (1500 − 8/9 · Qd3) = 1/0.667 · (1500 − 8/9 · 249) ∼= 1917 pcu/h
C4 = 1/γ · (1500 − 8/9 · Qd4) = 1/0.667 · (1500 − 8/9 · 242) ∼= 1926 pcu/h

Finally, the values CRUe and CRUc are:

CRUe1 = (γ · Qe1/Ce1) · 100 = (0.667 · 322/1840) 100 = 11.7%
CRUe2 = (γ · Qe2/Ce2) · 100 = (0.667 · 252/1834) 100 = 9.2%
CRUe3 = (γ · Qe3/Ce3) · 100 = (0.667 · 329/1914) 100 = 11.4%
CRUe4 = (γ · Qe4/Ce4) · 100 = (0.667 · 408/1926) 100 = 14.1%
CRUc1 = (γ. Qe1 + 8/9 · Qd1)/1500 · 100

= (0.667 · 322 + 8/9 · 307)/1500 · 100 = 32.5%
CRUc2 = (γ. Qe2 + 8/9 · Qd2)/1500 · 100

= (0.667 · 252 + 8/9 · 311)/1500 · 100 = 29.6%
CRUc3 = (γ. Qe3 + 8/9 · Qd3)/1500 · 100

= (0.667 · 329 + 8/9 · 249)/1500 · 100 = 29.4%
CRUc4 = (γ. Qe4 + 8/9 · Qd4)/1500 · 100

= (0.667 · 408 + 8/9 · 242)/1500 · 100 = 32.5%

2.1.3 TRRL Formula (United Kingdom)

With the TRRL formula, capacity C of a generic entry is determined as a function
of the leg and circle geometric parameters and of the circulating flow in the circle
(Qc) in front of the entry [4].

The relationship was developed by Kimber, and it is based on experimental obser-
vations of a large number of operating roundabouts in England. It has the following
linear form:

C = k · (F − fcQc) (pcu/h) (2.6)

where:

F = 303 · x2
fc = 0.210 · tD · (1 + 0.2 · x2)
k = 1 – 0.00347 · (�–30) – 0.978 · (1/r–0.05)

tD = 1 + 1

2 · [1 + exp((D − 60)/10)]

x2 = v + (e − v)

(1 + 2 · S)

S = 1.6 (e–v)/�′ = (e–v)/�
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Table 2.2 Geometric parameters used by the TRRL formula

Parameter Description Range values

e Entry width 3.6–16.5 m
v Lane width 1.9–12.5 m
e′ Previous entry width 3.6–15.0 m
v′ Previous lane width 2.9–12.5 m
u Circle width 4.9–22.7 m
�, �′ Flare mean length 1–∞ m
S Sharpness of the flare 0–2–9
r Entry bend radius 3.4–∞ m
� Entry angle 0–77◦
D = Dext Inscribed circle diameter 13.5–171.6 m
W Exchange section width 7.0–26.0 m
L Exchange section length 9.0–86.0 m

Table 2.2 shows the geometric parameters, the respective symbols used in the
procedure, and their range [4].

The main indications contained in [4] for the determination of such parameters
are now presented. However, this determination can sometimes be rather difficult
because of the particular geometric configurations of the roundabout.

To illustrate the geometric elements that are used in the formula, it is useful to
observe Figs. 2.4, 2.5, and 2.6. They are taken from the original work [4], and they
show the left-side driving in the United Kingdom requiring that travel in the circle
be clockwise. To apply the procedure to counterclockwise roundabouts that are used
for right-side traffic, homologous symmetrical elements must be used.

The width of the entry (e) is determined along the perpendicular line traced from
point A to the external edge (See Fig. 2.4).

The width of the entry lane (v) must be determined upstream of the leg widening
next to the entry along the perpendicular line traced from the axis of the roadway to
the external edge.

The width of the circulatory roadway (u) represents the distance between the
splitter island at legs (point A) and the central island.

The entry radius (r) is the smallest bend radius of the external edge next to the
entry.

The width of the weaving section (W) is the shortest distance between the central
island and the external edge in the stretch between an entry and the following exit.

The weaving section (L) is defined as the shortest distance between the splitter
islands at the legs of two successive entries.

The mean length of the flare can be determined using either of the two param-
eters � or �′. Figure 2.5 shows the geometric constructions for their determination.
In both cases, by tracing a line parallel to the curve HA (at a distance v from it), we
can determine the curve GD, which intersects the segment AB (which represents
the entry width) at point D; the length � corresponds to the segment CF, determined
along the perpendicular line that passes through C (mean point of segment BD) of
segment AB (with F as intersection point between the above-mentioned perpendicu-
lar and the curve GD); length �′ corresponds to segment CF′ along a curve parallel to
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Fig. 2.4 Geometric elements used in the TRRL formula [3]

Fig. 2.5 Geometric construction for the determination of � and �′ [3]
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Fig. 2.6 Geometric
construction for the
determination of the entry
angle � [4]

the external edge BG and passing through C (with F′ as intersection point between
the above-mentioned curve and the curve GD).

Between � and �′, the approximate relationship �′ = 1.6 � is valid within the
allowed variability for the practical use of geometric parameters.

The entry angle (�), which represents the conflicting angle between the entering
flows and the circulating flows, must be determined according to the straightforward
indications shown in Fig. 2.6.

Now, we present an example of the application of the procedure.
Consider a four-legged roundabout with the following features:

– inscribed circle diameter: D = 45 m;
– entry width: e = 4.8 m;
– lane width: v = 3.5 m;
– flare mean length �′ = 25 m;
– entry radius r = 40 m;
– entry angle: � = 60◦.

Traffic data (expressed in pcu/h) are summarized in the matrix O/D:

MO/D ≡

⎡

⎢⎢
⎣

0 150 300 200
200 0 150 350
350 150 0 150
300 250 200 0

⎤

⎥⎥
⎦
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From matrix O/D, the circulating flows in front of each entry can be obtained
(Eq. (2.12)):

Qc1 = 600 pcu/h
Qc2 = 700 pcu/h
Qc3 = 750 pcu/h
Qc4 = 700 pcu/h

Then, we can determine the calculation parameters of each leg using Eq. (2.6)
since all of the geometric parameters relative to each entry are the same:

S = 1.6 · (e − v)/�′ = 1.6 · (4.8 − 3.5)/25 = 0.083
x2 = v + (e − v)/(1 + 2 · S) = 3.5 + (4.8 − 3.5)/(1 + 2 · 0.083) = 4.615
F = 303 · x2 = 303 · 4.615 = 1398
tD = 1 + 0.5/[1 + exp ((D − 60)/10)]

= 1 + 0.5/[1 + exp((45 − 60)/10)] = 1.409
fc = 0.210 · tD · (1 + 0.2 · x2) = 0.210 · 1.409 · (1 + 0.2 · 4.615) = 0.569
k = 1 − 0.00347 · (� − 30) − 0.0978 · (1/r − 0.05) =

= 1 − 0.00347.(60 − 30) − 0.978 · (1/40 − 0.05) = 0.920

Therefore the capacity formula for all the legs can be written as:

C = k · (F − fcQc) = 0.920 · (1398 − 0.569 · Qc) = 1286 − 0.523 · Qc

The capacity values determined for the four entries are:

C1 = 972 pcu/h
C2 = 919 pcu/h
C3 = 893 pcu/h
C4 = 919 pcu/h

Among the further applications of the TRRL capacity formula, we illustrate the
determination of a roundabout entry width.

The entering flow of an entry is set to Qei = 800 pcu/h; the circulating flow in
front of the entry is set to Qci = 1100 pcu/h.

The geometric data relative to the entry are the following:

– inscribed circle diameter D = 40 m;
– entry lane width v = 7.3 m;
– flare mean length �′ = 20 m;
– entry bend radius r = 25 m; and
– entry angle � = 30◦.

We want to determine the entry width “e” necessary, for example, to ensure a
reserve capacity equal to the entering flow.



2.1 Capacity Calculation at Steady-State Conditions 27

Therefore, we have:

k = 1 − 0.00347 · (30 − 30) − 0.978 · (1/25 − 0.05) = 1.01
tD = 1 + 0.5/[1 + exp((40 − 60)/10)] = 1.44
fc = 0.210 · tD · (1 + 0.2 · x2) = 0.210 · 1.44 · (1 + 0.2 · x2)
F = 303 · x2

The entry capacity necessary to have a reserve capacity equal to the value of the
entering flow is equal to 2 · 800 = 1600 pcu/h.

Therefore, we have:

C = k · (F − fcQc)
1600 = 1.01 · [303 · x2 − 0.210 · 1.44 · (1 + 0.2 · x2) · 1100]
1600 = 306.03 · x2 − 335.97 − 67.19 · x2
1935.97 = 238.84 · x2
x2 = 8.11

On the other hand, we can also determine:

S = 1.6(e − v)/�′ = 1.6(e − 7.3)/20

x2 = v + (e − v)

(1 + 2 · S)
= 7.3 + (e − 7.3)

[1 + 2 · 1.6 · (e − 7.3)/20]

Equating the two expressions for x2, we obtain the value of the width requested,
which is e = 8.23 m.

2.1.4 GIRABASE Formula (France)

GIRABASE is the commercial software currently used in France to determine the
capacity of a roundabout. It was developed by CETE de l’Ouest of Nantes and was
accepted by CERTU and by SETRA3 [5].

The final version of the formula was written after it was tested by Urbahn in
Germany in 1996 and updated by Guichet in 1997.

It was developed by treating traffic data collected by observing the entries of
roundabouts (operating at saturation conditions) with statistical regression tech-
niques. In particular, GIRABASE software’s empirical regression equations are
based on the counting of 63000 vehicles during 507 saturated operation periods
of 5–10 min in 45 different roundabouts [6].

The procedures can be used for all types of roundabouts (from small roundabouts
to large roundabouts) located in urban or rural areas, with the number of legs ranging
from three to eight and with one, two, or three circle lanes and entry lanes [7].

3 CETE: Centre d’Etudes Techniques de l’Equipement; CERTU: Centre d’Etudes sur les Réseaux,
les Transport, l’Urbanisme et les constructions publiques; SETRA: Service d’Etudes Techniques
des Routes et Autoroutes.
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Fig. 2.7 Traffic flows and geometric elements for the GIRABASE formula

Figure 2.7 shows the traffic flows and the geometric elements of the roundabout
considered in the procedure; Table 2.3 shows the ranges of the geometric elements
for the application of the procedure.

The formula for the determination of entry capacity (pcu/h), based on the
exponential regression technique, is the following:

C = A · e−CB·Qd (2.7)

with

A = 3600

Tf

(
Le

3.5

)0.8

(2.8)

Tf = follow-up time = 2.05 s;
Le = width of the entry in proximity to the roundabout, determined perpendic-

ularly to the entry direction (m);
CB = coefficient that is 3.525 for urban areas and 3.625 for rural areas;

Table 2.3 Range of the roundabout geometric elements for the application of the GIRABASE
procedure

Parameter Description Range values

Le Entry width 3–11 m
Li Splitter island width 0–70 m
Lu Exit width 3.5–10.5 m
LA Circle width 4.5–17.5 m
Ri Central island radius 3.5–87.5 m
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Qd = Qu · ka ·
(

1 − Qu

Qc + Qu

)
+ Qci · kti + Qce · kte (2.9)

Qd = disturbing flow in front of the entry (pcu/h);
Qu = exiting flow (pcu/h);
Qc= Qci + Qce = circulating flow in front of the entry (pcu/h);
Qci = traffic rate Qc on the inner circle lane (pcu/h);
Qce = traffic rate Qc on the outer circle lane (close to the entry) (pcu/h);

ka =
⎧
⎨

⎩

Ri
Ri + LA − Li

Limax
per Li < Li max

0 in the other cases

Ri = central island radius (m);
LA = circle width (m);
Li = splitter island width at legs (m);

Limax = 4,55 ·
√

Ri + LA

2

kti = min

⎧
⎪⎪⎨

⎪⎪⎩

160

LA · (Ri + LA)

1

kte = min

⎧
⎪⎪⎨

⎪⎪⎩

1 − (LA − 8)

LA
·
(

Ri

(Ri + LA)

)2

1

As an example of the application of the procedure, consider a four-legged
roundabout with a double-lane circle and single-lane entries, located in a rural
environment. It has the following geometric features:

– external diameter: Dext = 50 m;
– entry width: Le = 4.0 m;
– splitter island width at legs: Li = 7.0 m;
– circle width: LA = 10.0 m.

The value Ri of the central island outer radius is determined with the relationship:

Ri = Dext − 2 · LA

2
= 15 m
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Since the roundabout is located in a rural area, the coefficient CB is 3.625.
The value of parameter A, to be determined by means of Eq. (2.8), is the same

for all entries and is equal to:

A = 3600

Tf

(
Le

3.5

)0.8

= 3600

2.05

(
4.0

3.5

)0.8

= 1954

The traffic data from the TRRL procedure example (Sect. 2.1.3) are used here,
and they are represented by the following matrix O/D:

MO/D ≡

⎡

⎢⎢
⎣

0 150 300 200
200 0 150 350
350 150 0 150
300 250 200 0

⎤

⎥⎥
⎦

MO/D can be used to determine the values of the flows exiting from each leg and
circulating in the circle in front of each entry:

Qu1 = 850 pcu/h Qc1 = 600 pcu/h
Qu2 = 550 pcu/h Qc2 = 700 pcu/h
Qu3 = 650 pcu/h Qc3 = 750 pcu/h
Qu4 = 700 pcu/h Qc4 = 700 pcu/h

Regarding the traffic rates Qci and Qce, we assume that about 70% of the circu-
lating flow travels on the outer circle lane and 30% travels on the inner circle lane
in front of each entry. Thus, we have the following values:

Qci1 = 420 pcu/h Qce1 = 180 pcu/h
Qci2 = 490 pcu/h Qce2 = 210 pcu/h
Qci3 = 525 pcu/h Qce3 = 225 pcu/h
Qci4 = 490 pcu/h Qce4 = 210 pcu/h

For kti and kte we calculate:

kti = min

{
160

LA · (Ri + LA)
;1

}
= min {0.57; 1} = 0.57

kte = min

{

1 − (LA − 8)

LA
·
(

Ri

(Ri + LA)

)2

;1

}

= min {0.92;1} = 0.92

To determine the disturbing flows in front of each leg, we must also determine
the coefficient ka that is the same for all the legs as function of Limax

Limax = 4.55 ·
√

Ri + LA
2 = 4.55 ·

√
15 + 10

2 = 20.35 m > Li = 4.0 m

ka = Ri

Ri + LA
− Li

Limax
= 15

15 + 10
− 4.0

20.35
= 0.256
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Therefore, with Eq. (2.9) we determine the disturbing flows in front of each leg.
They are

Qd1 = Qu1 · ka ·
(

1 − Qu1
Qc1+Qu1

)
+ Qci1 · kti + Qce1 · kte =

= 850 · 0.256 ·
(

1 − 850

420 + 850

)
+ 420 · 0.57 + 180 · 0.92

= 526 pcu/h

and, similarly,

Qd2 = 587 pcu/h
Qd3 = 634 pcu/h
Qd4 = 598 pcu/h.

Finally, from Eq. (2.7), the entry capacity values

C1 = A · e−CB·Qd1 = 1954 · e−3.625·526 = 1151pcu/h

and, similarly,

C2 = 1082 pcu/h
C3 = 1032 pcu/h
C4 = 1070 pcu/h

Instead of applying the GIRABASE procedure, a simplified capacity formula
is used (CERTU [8]) for urban French roundabouts. It is considered suitable for
medium-sized and large-sized roundabouts (with a central island diameter from 20
to 60 m) with single-lane entries, symmetrical location of the legs, and a balanced
entering traffic demand. In these cases, the entry capacity can be determined with
the relationship:

C = 1500 − 5

6
· Qd (2.10)

as function of the disturbing flow

Qd = a · Qc + b · Qu (2.11)

with

a. variable, as function of the central island radius, between 0.9 and 0.7 for Ri <
15 m and > 30 m, respectively.

b. variable, as function of the splitter island width at legs, between 0 and 0.3 for Li
> 15 m and Li = 0 m, respectively.
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Finally, it is worthwhile to note that, in France, the GIRABASE procedure long
ago replaced the other formulas developed by various French road research centers.
Therefore, even the SETRA formula (See Sect. 5.2.1), which is still used extensively
by Italian engineers, is no longer used in France.

2.1.5 Brilon-Wu Formula (Germany)

In Germany, based on an idea from Tanner, in 1997, Brilon and Wu proposed the
following formula for the calculation of capacity C (pcu/h) of a roundabout entry
(required by German Standard HBS 2001) [9]:

C = 3600 ·
(

1 − � · Qc/3600

nc

)nc

· ne

Tf
·exp

[
−Qc/3600 ·

(
Tc − Tf

2
−�

)]
(2.12)

where:

Qc = circulating flow in front of the entry (pcu/h);
nc = circle lane number;
ne = entry lane number;
Tc = critical gap;
Tf = follow-up time;
� = minimum headway between the vehicles circulating in the circle.

Therefore, according to Eq. (2.12), the capacity determination of roundabout
entries is a function of the users’ behaviors, represented by the determination of
the psycho-technical times Tc, Tf, and �, as well as circulating traffic, the number
of circle lanes, and the number of entry lanes.

Setting the model under the German conditions on the basis of experimental data
(Brilon), the psycho-technical times have been estimated as Tc = 4.1 s, Tf = 2.9 s,
and � = 2.1 s.

Figure 2.8 shows the capacity behaviors determined using Eq. (2.12), as a
function of the circulating traffic and of various geometric configurations of the
roundabout (ne/nc).

Further developments of this capacity formula can be found in [9], where it is
also recommended that Eq. (2.12) be used only in the case of roundabouts with a
single-lane circle and single-lane entries. In the case of roundabouts that have circu-
latory roadways that can be used for vehicle traffic along two lines,4 the following
relationship is used to determine the capacity C (pcu/h) of an entry:

4The external diameter Dext must be between 40 and 60 m, and the central line of the circle must
not be marked. In addition, the semi-practicable area around the central line must not be planned.
The width of the circle must be a constant value of approximately 8, with a maximum of 10 m.
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Fig. 2.8 Capacity of roundabout entries according to the Brilon-Wu formula (HBS 2001)

C = 3600 · ne

Tf
· exp

[
− Qc

3600
·
(

Tc − Tf

2

)]
(2.13)

where:

Qc = circulating flow in front of the entry (pcu/h);
ne = parameter connected to the number of entry lanes; equal to 1 for single-

lane entries and 1.4 for double-lane entries;
Tc = critical gap = 4.3 s;
Tf = follow-up time = 2.5 s.

As an example, we determine the entry capacity for a geometric configuration
(a four-legged roundabout, with a double-lane circle and double-lane entries) and
with the traffic data already presented in Sects. 2.1.1 and 2.1.2. First, we determine
the circulating flows in front of each entry (Sect. 2.1.1); then we use Eq. (2.13) to
determine capacity

C1 = 3600 · (ne1/Tf) · exp
[−Qc1/3600 · (Tc − Tf/2)

] =
= 3600 · (1.4/2.5) · exp

[−376/3600 · (4.3 − 2.5/2)
] = 1194 pcu /h

and, similarly,
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C2 = 3600 · (1.4/2.5) · exp
[−379/3600 · (4.3 − 2.5/2)

] = 1191 pcu/h

C3 = 3600 · (1.4/2.5) · exp
[−284/3600 · (4.3 − 2.5/2)

] = 1291 pcu/h

C4 = 3600 · (1.4/2.5) · exp
[−276/3600 · (4.3 − 2.5/2)

] = 1299 pcu/h

2.1.6 HCM 2000 Formula (USA)

The HCM 2000 approach for evaluating the entry capacities C for roundabouts is
limited to schemes with one lane in the circle and one lane at the entries and with
circulating flow Qc not greater than 1200 pcu/h [1]. To evaluate C, the following
equation is used:

C = Qce−QcTc/3600

1 − e−QcTc/3600
(pcu/h) (2.14)

where:

Qc = circulating flow in front of the entry (pcu/h);
Tc = critical gap (s);
Tf = follow-up time (s).

Since extensive experimental data on operating roundabouts in the US were not
available when the latest edition of the HCM was published, the Manual proce-
dure gives an interval of capacity values obtained with the following values of the
parameters Tc and Tf.

The upper bound of Eq. (2.14) is obtained with Tc = 4.1 s and Tf = 2.6 s, and
the lower bound is obtained with Tc = 4.6 s and Tf = 3.1 s (See Fig. 2.9).

With the traffic data of Table 2.4, the capacities evaluated with Eq. (2.14) and
with the German formula (2.1) were compared for a roundabout with one lane in
the circle and one at the entries.

In this example the German formula is the following:

C = 1218 − 0.74 · Qc (pcu/h) (2.15)

In this case, we note that the average value between the lower and the upper
bound of the capacity, evaluated by the HCM formula, is, in practice, the same as
the value obtained by the German formula (2.15).

Figure 2.10 shows a comparison of two capacity formulas, the HCM capacity
formula (Eq. (2.14)) and the German formula (Eq. (2.12)).

These two formulas are applied to a roundabout with single-lane entries and a
single-lane circle. Equations (2.14) and (2.12) were evaluated using for Tc and Tf
the values indicated by the German capacity formula (Tc = 4.1 s; Tf = 2.9 s).

We can note (See Fig. 2.9) that the American formula overestimates capacity
systematically when compared to the values obtained from the German formula.
This result was observed when the same geometric and traffic conditions were used,
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Fig. 2.9 HCM 2000 capacity formula for different values of critical gap and follow-up time

Table 2.4 Traffic data and capacity value for a roundabout

Capacity

HCM 2000 formula German
formula
(See Eq.
2.15)Upper Lower Average

Entry Maneuver Volume Qc bound bound

1 Right turn 22
185 1198 992 1095 1081

Straight 208
Left turn 164

2 Right turn 59
384 1023 834 929 933

Straight 432
Left turn 44

3 Right turn 187
640 834 667 751 744

Straight 266
Left turn 38

4 Right turn 40
348 1054 862 958 960

Straight 134
Left turn 13

as well as when users had the same psycho-technical parameters, for values of Qc
greater than 300–350 pcu/h.
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Fig. 2.10 Comparison of the German HBS 2001 capacity formula and the HCM 2000 capacity
formula

2.2 Exit and Circle Capacities

Until now, no studies have been conducted that were specifically dedicated to the
determination of roundabout exit and circle capacities.

Regarding exits, field observations show that the capacity limit for each lane is
in the range of 1200–1400 pcu/h.5

Regarding the circulatory roadway, we can use the values shown in Table 2.5 con-
cerning observations about operating roundabouts in Germany just as an indication
of the values that can be expected.

2.3 Consideration of Pedestrian Crosswalks

In urban roundabouts, pedestrian crosswalks at legs reduce entry and exit capacities
in proportion to the value of the pedestrian flow.

In current technical practice, three calculation procedures are mainly used
to determine the above-mentioned entry capacity reductions, i.e., the English

5 In Europe, for safety reasons, double-lane exits are rarely used.
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Table 2.5 Circle capacity values according to empirical data from operating roundabouts in
Germany

Type of roundabout Number of entry
lanes

Circle capacity
[veh/h]

Roundabouts with single-lane 1 1600
circles (mini roundabouts and
compact roundabouts)
Compact roundabouts with
double-lane circles

1 1600
2 1600

Large roundabouts 1 2000
2 2500

procedure (Marlow and Maycock), the German procedure (Brilon, Stuwe and
Drews), and the French procedure (CETE de l’Ouest).

All three of the procedures are valid only when the assumption is made that
pedestrians at pedestrian crosswalks have priority over vehicular traffic.

The English and French procedures are based on the same principles, since they
both use the results of the mathematical queuing theory.

The German procedure is based on the treatment of empirical data obtained from
operating roundabouts.

Regarding exits, specific formulas are not available at the present time, and, as
will be discussed later, the same criteria that are used for exits are also used for
entries.

2.3.1 Entry Capacities in Presence of Pedestrian Crosswalks

2.3.1.1 Marlow and Maycock Formula

First, the capacity value Cap in the presence of only pedestrian flow Qped (Griffiths’
formula) is calculated [10]

Cap = Qped

Qped · β + (eQped·α − 1) · (1 − e−Qped β)
· 3600 (2.16)

where:

Qped = pedestrian flow (ped/s);
β = 1

C0
(s);
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C0 = capacity with pedestrian and vehicular flows equal to zero (completely
empty roundabout);

α = B/vped = time necessary (s) to allow pedestrians to completely cross the
pedestrian crosswalk, where B (m) is the width of the road at the pedestrian
crosswalk, and vped (m/s) is the (mean) pedestrian flow speed.

The width B, which characterizes each entry, must be defined separately for each
entry according to the roundabout geometry.

For vped, except for different direct determinations, one assumes vped = 0.5–
2.0 m/s, with the suggested default value of 1.4 m/s.

Once known the value of Cap, entry capacity C/ped, which takes into account the
pedestrian flow, is

C/ped = C · M (2.17)

where M is a reduction factor of the capacity C value (veh/h) of the entry considered
in absence of the pedestrian flow provided by

M = Rn+2 − R

Rn+2 − 1
(2.18)

with

R = Cap

C
(2.19)

and “n” is equal to the number of vehicles that may be in the queuing area between
the pedestrian crosswalk and the yielding line.

The term “n,” which must be determined for each entry, is a function of the mean
longitudinal size of the vehicles (equal to 5–6 m); to determine n, we consider all
the entry lanes, e.g., in the case of a double-lane entry and a distance of 5 m between
the pedestrian crosswalk and the yielding line, n = 2.

Figures 2.11, 2.12, 2.13, and 2.14 show the relationship M = M(Qc) for two
urban roundabouts, i.e., a single-lane entry roundabout6 (Figs. 2.11 and 2.12) and
a double-lane entry roundabout7 (Figs. 2.13 and 2.14). M was determined with the
TRRL capacity procedure (Eq. (2.6)) and with the German HBS 2001 procedure
(Brilon-Wu formula) (Eq. (2.12)). All the graphs were traced for increasing pedes-
trian flow values Qped from 100 to 800 ped/h with increments of 100 ped/h. The
width of the pedestrian crosswalk B was assumed to be 3.5 m and 7.5 m, for single-
lane entries and double-lane entries, respectively. Pedestrian speed was set to vped
= 1.4 m/s.

6 The geometric parameter values used are as follows: D = 34 m; u = 7 m; e = 4 m; v = 3 m;
�′ = 7.5 m; � = 35◦; r = 20.8 m. (The symbols for the parameter values are reported in Table 2.2.)
7 The geometric parameter values used are as follows: D = 56 m; u = 8 m; e = 8 m; v = 6.5 m;
�′ = 15.1 m; � 35◦; r = 32.7 m. (The symbols for the parameter values are reported in Table 2.2).
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Fig. 2.11 M = M(Qc) relationship according to Marlow and Maycock for a single-lane round-
about with single-lane entries (capacity C determined by TRRL procedure)

Fig. 2.12 M = M(Qc) relationship according to Marlow and Maycock for a single-lane round-
about with single-lane entries (capacity C determined with HBS 2001 procedure)
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Fig. 2.13 M = M(Qc) relationship according to Marlow and Maycock for a roundabout with
double-lane entries (capacity C determined with TRRL procedure)

Fig. 2.14 M = M(Qc) relationship according to Marlow and Maycock for a roundabout with
double-lane entries (capacity C determined with HBS 2001 procedure)
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2.3.1.2 Brilon, Stuwe and Drews Formula

With this method, as with the method just illustrated in the previous section, the
entry capacity C (determined with any procedure which doesn’t include pedestrian
crosswalks) is reduced by means of a factor M that takes into account the effects of
pedestrian crosswalks [11]:

C/ped = C · M (2.20)

M is given on the basis of entry configurations:

– single-lane entry

M = 1119.5 − 0.715 · Qc − 0.644 · Qped + 0.00073 · Qc · Qped

1069 − 0.65 · Qc
(2.21)

– double-lane entry

M = 1260.6 − 0.381 · Qped − 0.329 · Qc

1380 − 0.50 · Qc
(2.22)

where

Qc = circulating flow in front of the entry (pcu/h);
Qped = pedestrian flow crossing the leg (ped/h).

Figures 2.15 and 2.16 show the relationship M = M(Qc) for a single-lane entry
roundabout (See Fig. 2.15) and a double-lane entry roundabout (See Fig. 2.16). The
graphs were traced for increasing pedestrian flow values of Qped from 100 to 800
ped/h with increments of 100 ped/h.

The equations that allow the determination of the reduction factor M may give
unrealistic results, when used outside the existence intervals of the experimental
measures. Thus, for example, in the case of single-lane entry roundabouts with a
small volume of pedestrians (<100 ped/h), the formulas show that when there is a
marginal increase in pedestrians Q ped, capacity also tends to increase.

However, these circumstances do not invalidate the formula, but they demand
careful application.

2.3.1.3 CETE de l’Ouest Formula

Also with this procedure, entry capacity C is reduced by means of a factor F that
takes into account the pedestrian flow [5]

C/ped = C · F (2.23)
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Fig. 2.15 M = M(Qc) relationship according to Brilon, Stuwe and Drews for a single-lane entry
roundabout

Fig. 2.16 M = M(Qc) relationship according to Brilon, Stuwe and Drews for a double-lane entry
roundabout



2.3 Consideration of Pedestrian Crosswalks 43

with

F = 1 − exp ( − k · Qd · β) · [1 − exp ( − Qped · T)] (2.24)

where:

Qd = disturbing traffic in front of the entry (pcu/s) (Qd must be determined
according to the capacity formula chosen, e.g., Qd is given by Eq. (2.9) if
one uses the GIRABASE procedure);

Qped = pedestrian flow crossing the leg (ped/s);

β =
1

C0
(s);

C0 = capacity with pedestrian and vehicular flows equal to zero (completely
empty roundabout);

k = number of vehicles that may be in the area between the pedestrian
crosswalk and the yielding line.

The previous graphs were traced for increasing pedestrian flow values Qped from
100 to 800 ped/h with increments of 100 ped/h.

Also Figure 2.17 shows the relationship F = F(Qc) for increasing pedestrian flow
values Qped from 100 to 800 ped/h with increments of 100 ped/h.

Fig. 2.17 F = F(Qc) relationship according to the CETE formula
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2.3.2 Exit Capacities in Presence of Pedestrian Crosswalks

We can reasonably assume that a heavy pedestrian flow at an exit causes a capacity
reduction of the exit. At first, these effects are generally and approximately deter-
mined with the formula by Marlow and Maycock (Sect. 2.3.1.1), even though recent
studies have shown that, using the equations proposed by this method, the pedestrian
influence on the roundabout exit capacity is overestimated.

In conclusion, we wish to emphasize that the formulas relative to the determina-
tion of roundabout exit capacities demand careful application because they have not
been specifically validated at this time.

2.4 Some Concluding Remarks on Capacity Formulations

The differences between the formulas presented in the previous sections and
between these formulas and other formulas from the literature are mainly caused by
the following reasons, as are the discrepancies between their capacity estimates:

– drivers’ behaviors at the intersection are due, among other things, to the extent of
their experience with roundabouts on the road networks of their countries;

– roundabout geometric standards vary from nation to nation, which makes them
dissimilar from configurations that have the same number of circle lanes and entry
lanes;

– for the mixed traffic data used to determine and set calculation procedures. Some
of these data are specific for certain environments, such as urban areas and rural
areas, whereas other data are from contexts that are only generically similar to the
environments from which the most significant samples come;

– the environments where the roundabouts are built are different because of vary-
ing national urban and territorial features, even though different environments are
called in the same way in the different languages;

– there are correlations between the geometric variables and traffic values that can
highlight or hide the role of some parameters during the experimental phase and
statistical treatment of measures. Thus, these parameters may not be present in the
capacity formulas.

In some countries (as in Italy and Spain), a specific formula for the determination
of circular intersection capacity has not yet been defined.

Therefore, in these countries, it is essential to compare the different types of
roundabouts present in the national standard (if one is available) and in foreign
standards that address the same types of intersections. Thus, we can better choose
the best calculation procedure for the case under examination, at least with respect
to the conformity between the geometric standards and the environment.

As we have just mentioned, different nations use different classifications and
nomenclature, resulting in their standards not being fully compatible or interchange-
able. (See, for example, Tables 2.6 and 2.7, which compare Italian, German, and
Swiss definitions).
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Table 2.6 Roundabout classification: Italian versus German nomenclatures

Italian
nomenclatures

German nomenclatures

Dext (m) Dext (m)

Mini-roundabouts 14–25 13–24
Compact

roundabouts
25–40 26–60 urban:

26–35 (single-lane
circle)
rural:
30–45 (double-lane
circle)
Urban and rural:
40–60 (double-lane
circle)

Roundabouts 40–50 55–80
“Rotary circulation”

layout
>50 –

Table 2.7 Roundabout classification: Italian versus Swiss nomenclatures

Italian
nomenclatures

Swiss nomenclatures

Dext (m) Dext (m)

Mini-roundabouts 14–25 14–20
(town centers,
residential areas, urban
areas)

Small roundabouts – 19–25
(town centers,
residential urban, and
suburban areas)

Compact
roundabouts

25–40 25–35
(urban, suburban, and
rural areas)

Roundabouts 40–50 –
Big roundabouts

(Swiss Standard
nomenclature)

– >35
(rural areas)

“Rotary
circulation”
layout
(Italian Standard
nomenclature)

>50 –
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On the other hand, one must make such comparisons in order to decide which
capacity relationship to use.

In fact, the users’ behaviors are not comparable when specific investigations are
not available.

Finally, for engineers of a country where a capacity formulation is not available,
the selection of a capacity formula is not easy and must be seriously considered.

However, when the engineers analyze the results obtained, they can use the com-
parison with the results derived from a different formula that has been deemed to be
suitable for the case in question and/or compare the results with the ones of a traffic
micro-simulation study of the roundabout.

2.5 Capacity Calculation at Saturation or Oversaturation
Conditions of Entries

If traffic demand at one or more entries equals or exceeds capacity, the system
reaches a state characterized by flows coming from undersaturated entries equal
to demand and from saturated or oversaturated entries equal to capacity.

Now we recall that, an entry capacity depends on the circulating flows determined
by entering flows coming from the other legs of the roundabout. Therefore, the entry
capacity values calculated only on the basis of traffic demand at the intersection
and without taking into account the saturation or oversaturation conditions of some
entries are not correct.

Thus, we will now present an iterative method for the determination of entering
flows to a roundabout and the determination of the respective capacity values for
saturated or oversaturated conditions at one or more entries.

This procedure is illustrated for a four-legged roundabout, but it is always valid
due to the mathematical nature of the problem.

Traffic demand is known and is represented by the flow vectors [Qei] and matrix
PO/D, i.e., matrix MO/D (See Sect. 1.1).

We proceed with successive calculation steps; for each step (k), we determine
the flow values for each leg that can actually enter the roundabout. Thus, we obtain
a vector [Q*(k)

ei ]; the iterative calculation converges very rapidly and ends when the

same entering flows are reached for two successive steps, i.e., [Q*(k−1)
ei ] = [Q*(k)

ei ].
The values represent the volumes that can enter the roundabout examined, under

the restraint that one or more legs must have demands equal to or exceeding their
capacities (traffic rate ρi = Qei/Ci ≥ 1, i.e., reserve capacity RCi = Ci – Qei ≤ 0).

At step (1) of the procedure, we assume that the disturbing traffic is zero in front
of entry 1 (Q(1)

d1 = 0). Then, we determine the corresponding capacity C(1)
1 value

and the flow Q*(1)
e1 as the smaller of the calculated capacity value and traffic demand

Qe1.
For entry 2, on the basis of flow Q*(1)

e1 and traffic percentage matrix PO/D,

we determine the disturbing traffic value (Q(1)
d2 ), the corresponding capacity C(1)

2



2.5 Capacity Calculation at Saturation or Oversaturation Conditions of Entries 47

value, and the flow Q*(1)
e2 , as the smaller of the calculated capacity value and traffic

demand Qe2.
We proceed similarly for entries 3 and 4. Thus, for entry 3, we determine the

disturbing traffic (Q(1)
d3 ) (starting with Q*(1)

e1 , Q*(1)
e2 , and the traffic percentage matrix),

capacity C(1)
3 and the flow Q*(1)

e3 ; for entry 4, the disturbing traffic (Q(1)
d4 ) (starting

with Q*(1)
e1 , Q*(1)

e2 , Q*(1)
e3 and the traffic percentage matrix), capacity C(1)

4 and the flow

Q*(1)
e4 . In the end, we obtain the vector [Q*(1)

ei ] of the entering flows at step (1).
At step (2), we repeat the calculations starting with entry 1, and we determine

the disturbing traffic (Q(2)
d1 ) (starting with Q*(1)

e2 , Q*(1)
e3 , Q*(1)

e4 and traffic percentage

matrix), capacity C(2)
1 , and the flow Q*(2)

e1 .
We proceed similarly, using an iterative method, for all of the other entries, until

we obtain the vector [Q*(2)
ei ] of the entering flows at step (2).

Regarding, in particular, the determination of disturbing flow Q(k)
di for the generic

leg “i” at step (k) of the iterative method, it is worth emphasizing that it must be
determined by means of the “most recent” values of the volumes that may enter
the roundabout from the other entry; thus, for example, for Q(2)

d2 , one uses the flow

values Q*(2)
e1 , Q*(1)

e3 , and Q*(1)
e4 ; for Q(2)

d3 , one uses, Q*(2)
e1 , Q*(2)

e2 , and Q*(1)
e4 , and so the

process continues until it is completed.
We proceed similarly, using an iterative method, for the following calculation

steps. Thus, we obtain a succession of vectors of entering flows [Q*(3)
ei ], ..., [Q*(k)

ei ];
as already discussed, the calculation converges very rapidly and ends when the same
entering volumes ([Q*(k−1)

ei ] = [Q*k
ei ]) occur for two successive steps and the same

disturbing flows ([Q*(k−1)
di ] = [Q*k

di ]) and capacities [C*(k−1)
i = C*k

i ] are reached.
Thus, we have determined the respective capacity values taking into account the

entering flow values at the intersection and the saturation or oversaturation condi-
tions of some of the entries. In particular, it is worth noting that, for the saturated
or oversaturated legs, the capacity values Ci evidently coincide with those of the
volumes Qei that may enter the roundabout.

2.5.1 A Worked Example

We will now present an application of the procedure just illustrated. For the sake
of simplicity, we use a capacity formula for which the disturbing traffic Qd consists
only of the circulating flow Qc in front of the entries (Qd = Qc). However, the pro-
cedure can be used without difficulty, even when Qd is also function of the exiting
flow of the leg. (See, for example, Eq. (2.9)).

Consider a four-legged roundabout for which the “traffic percentage matrix” is:

PO/D =

⎡

⎢⎢
⎣

0.00 0.31 0.38 0.31
0.24 0.00 0.44 0.32
0.36 0.40 0.00 0.24
0.30 0.30 0.40 0.00

⎤

⎥⎥
⎦
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The traffic demand vector (pcu/h) is

[Qei] = [
800 500 900 700

]

Therefore, the matrix O/D is

[O/D] =

⎡

⎢⎢
⎣

0 248 304 248
120 0 220 160
324 360 0 216
210 210 280 0

⎤

⎥⎥
⎦

Among the roundabout capacity formulas available in the literature, we use the
Brilon-Bondzio formula (2.1), as an example,

C = A − B · Qc

which is specialized for roundabouts with a single-lane circle and single-lane legs
(A = 1218, B = 0.74).

Starting with traffic data, we determine the circulating flow vector [Qci] (pcu/h)
(Eq. (1.12) in Chap. 1).

[Qci] = [
850 832 528 804

]

The capacity vector (pcu/h), determined through the application of the above-
mentioned formula for each leg, is

[Ci] = [
589 602 827 623

]

Comparing the traffic demand vector [Qei] to the capacity vector [Ci], we can
notice that entries 1, 3, and 4 are at oversaturation conditions ([ρi] = [Qi/Ci] =
[1.36 0.83 1.09 1.12]).

As already discussed, the circulating flow values and, therefore, the capacity val-
ues just determined are not correct under such conditions. In fact, the actual flow
entering the oversaturated legs is not equal to demand, but to capacity.

Therefore, if one or more entries are saturated, we use the procedure calculation
to determine a balanced situation.

For entry 1, if we assume at step (1) that Q(1)
c1 = 0, then we obtain C(1)

1 =
1218 − 0.74 · Q(1)

c1 = 1218 − 0.74 · 0 = 1218 pcu/h and Q∗(1)
e1 = min (C(1)

1 ; Qe1) =
min (1218; 800) = 800 pcu/h.
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This volume is divided into the following, on the basis of the traffic percentage
matrix:

Q∗(1)
12 = P12 · Q∗(1)

e1 = 0.31 · 800 = 248 pcu/h
Q∗(1)

13 = P13 · Q∗(1)
e1 = 0.38 · 800 = 304 pcu/h

Q∗(1)
14 = P14 · Q∗(1)

e1 = 0.31 · 800 = 248 pcu/h

For entry 2, we determine

Q(1)
c2 = Q∗(1)

13 + Q∗(1)
14 = 304 + 248 = 552 pcu/h

C(1)
2 = 1218 − 0.74 · Q(1)

c2 = 1218 − 0.74 · 552 = 810 pcu/h

Q∗(1)
e2 = min (C(1)

2 , Qe2) = min (810, 500) = 500 pcu/h

This volume is divided into the following, on the basis of the traffic percentage
matrix:

Q∗(1)
21 = P21 · Q∗(1)

e2 = 0.24 · 500 = 120 pcu/h

Q∗(1)
23 = P23 · Q∗(1)

e2 = 0.44 · 500 = 220 pcu/h

Q∗(1)
24 = P24 · Q∗(1)

e2 = 0.32 · 500 = 160 pcu/h

For entry 3, we determine

Q(1)
c3 = Q∗(1)

14 + Q∗(1)
21 + Q∗(1)

24 = 248 + 120 + 160 = 528 pcu/h

C(1)
3 = 1218 − 0.74 · Q(1)

c3 = 1218 − 0.74 · 528 = 827 pcu/h

Q∗(1)
e3 = min (C(1)

3 , Qe3) = min (827; 900) = 827 pcu/h

This volume is divided into:

Q∗(1)
31 = P31 · Q∗(1)

e3 = 0.36 · 827 = 298 pcu/h

Q∗(1)
32 = P32 · Q∗(1)

e3 = 0.40 · 827 = 331 pcu/h

Q∗(1)
34 = P34 · Q∗(1)

e3 = 0.24 · 827 = 198 pcu/h

For entry 4, we determine

Q(1)
c4 = Q∗(1)

21 + Q∗(1)
31 + Q∗(1)

32 = 120 + 298 + 331 = 749 pcu/h

C(1)
4 = 1218 − 0.74 · Q(1)

c4 = 1218 − 0.74 · 749 = 664 pcu/h

Q(1)
e4 = min (C(1)

4 ; Qe4) = min (664; 700) = 664 pcu/h

This volume is divided into:

Q∗(1)
41 = P41 · Q∗(1)

e4 = 0.30 · 664 = 199 pcu/h

Q∗(1)
42 = P42 · Q∗(1)

e4 = 0.30 · 664 = 199 pcu/h

Q∗(1)
43 = P43 · Q∗(1)

e4 = 0.40 · 664 = 266 pcu/h
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Table 2.8 Circulating flows [Qci], capacity [Ci], entering flows [Q*
ei], and matrix [M*

O/D] at step
(1) of the iterative method

Leg [Q(1)
ci ] [C(1)

i ] [Q*(1)
ei ] D 1 2 3 4

O

1 0 1218 800 1 0 248 304 248
2 552 810 500 2 120 0 220 160
3 528 827 827 3 298 331 0 198
4 749 664 664 4 199 199 266 0

For step (1), Table 2.8 shows the circulating flow values [Qci], capacity values
[Ci], entering flow values [Qei

∗], and matrix M∗
O/D.

The calculations proceed in an iterative way; in particular, it is worth noting that,
as already discussed, the circulating flow Qci

(k) in front of the generic leg “i” at step
(k) of the procedure must be determined by means of the “most updated” values of
the volumes that may enter the roundabout from the other legs, based on the previous
calculation steps.

For entry 1, we obtain

Q(2)
c1 = Q∗(1)

42 + Q∗(1)
43 + Q∗(1)

32 = 199 + 266 + 331 = 796 pcu/h

C(2)
1 = 1218 − 0.74 · Q(2)

c1 = 1218 − 0.74 · 796 = 629 pcu/h

Q∗(2)
e1 = min (C(2)

1 , Qe1) = min (629, 800) = 629 pcu/h

and therefore

Q∗(2)
12 = P12 · Q∗(2)

e1 = 0.31 · 629 = 195 pcu/h

Q∗(2)
13 = P13 · Q∗(2)

e1 = 0.38 · 629 = 239 pcu/h

Q∗(2)
14 = P14 · Q∗(2)

e1 = 0.31 · 629 = 195 pcu/h

Similarly, for entry 2 we determine

Q(2)
c2 = Q∗(2)

13 + Q∗(2)
14 + Q∗(1)

43 = 239 + 195 + 266 = 700 pcu/h

C(2)
2 = 1218 − 0.74 · Q(2)

c2 = 1218 − 0.74 · 700 = 700 pcu/h

Q∗(2)
e2 = min (C(2)

2 , Qe2) = min (700; 500) = 500 pcu/h

and therefore

Q∗(2)
21 = P21 · Q∗(2)

e2 = 0.24 · 500 = 120 pcu/h

Q∗(2)
23 = P23 · Q∗(2)

e2 = 0.44 · 500 = 220 pcu/h

Q∗(2)
24 = P24 · Q∗(2)

e2 = 0.32 · 500 = 160 pcu/h
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For entry 3, we have

Q(2)
c3 = Q∗(2)

14 + Q∗(2)
21 + Q∗(2)

24 = 195 + 120 + 160 = 475 pcu/h

C(2)
3 = 1218 − 0.74 · Q(2)

c3 = 1218 − 0.74 · 475 = 867 pcu/h

Q∗(2)
e3 = min (C(2)

3 , Qe3) = min (867, 900) = 867 pcu/h

and therefore

Q∗(2)
31 = P31 · Q∗(2)

e3 = 0.36 · 867 = 312 pcu/h

Q∗(2)
32 = P32 · Q∗(2)

e3 = 0.40 · 867 = 347 pcu/h

Q∗(2)
34 = P34 · Q∗(2)

e3 = 0.24 · 867 = 208 pcu/h

Finally, we determine for entry 4

Q(2)
c4 = Q∗(2)

21 + Q∗(2)
31 + Q∗(2)

32 = 120 + 312 + 346 = 778 pcu/h

C(2)
4 = 1218 − 0.74 · Q(2)

c4 = 1218 − 0.74 · 778 = 642 pcu/h

Q(2)
e4 = min (C(2)

4 ; Qe4) = min (642; 700) = 642 pcu/h

and therefore

Q∗(2)
41 = P41 · Q∗(2)

e4 = 0.30 · 642 = 193 pcu/h

Q∗(2)
42 = P42 · Q∗(2)

e4 = 0.30 · 642 = 193 pcu/h

Q∗(2)
43 = P43 · Q∗(2)

e4 = 0.40 · 642 = 257 pcu/h

For step (2), Table 2.9 shows the circulating flow values [Qci], capacity values
[Ci], entering flow values [Qei

∗], and matrix M∗
O/D.

Proceeding similarly for the successive calculation phases, we obtain the values
shown in Tables 2.10 and 2.11 (steps (3) and (4)).

Table 2.9 Circulating flows [Qci], capacity [Ci], entering flows [Q*
ei], and matrix M∗

O/D at step (2)
of the iterative method

Leg [Q(2)
ci ] [C(2)

i ] [Q*(2)
ei ] D 1 2 3 4

O

1 796 629 629 1 0 195 239 195
2 700 700 500 2 120 0 220 160
3 475 867 867 3 312 346 0 208
4 778 642 642 4 193 193 256 0
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Table 2.10 Circulating flows [Qci], capacity [Ci], entering flows [Q*
ei], and matrix M*

O/D at step
(3) of the iterative method

Leg [Q(3)
ci ] [C(3)

i ] [Q*(3)
ei ] D 1 2 3 4

O

1 796 629 629 1 0 195 239 195
2 691 707 500 2 120 0 220 160
3 475 867 867 3 312 347 0 208
4 778 642 642 4 193 193 256 0

Table 2.11 Circulating flows [Qci], capacity [Ci], entering flows [Q*
ei], and matrix M*

O/D at step
(4) of the iterative method

Leg [Q(4)
ci ] [C(4)

i ] [Q*(4)
ei ] D 1 2 3 4

O

1 796 629 629 1 0 195 239 195
2 691 707 500 2 120 0 220 160
3 475 867 867 3 312 347 0 208
4 778 642 642 4 193 193 256 0

At calculation steps (3) and (4), the entering flow vectors [Q*
ei], circulating flow

vectors [Q*
ci], and capacity vectors [Ci] coincide.8

The iterative process converges, i.e., [Q∗
ei] = [629 500 867 642] is the flow vec-

tor that enters the roundabout taking into account the oversaturation of entries 1, 3,
and 4; [C∗

i ] = [629 707 867 642] is the capacity vector.
As already pointed out, we can notice that, for oversaturated entries, the flow val-

ues that may enter the roundabout are equal to the capacity values of the respective
entries. On the other hand, for entry 2, which is at undersaturation conditions, the
entering flow value is equal to traffic demand.

2.6 Calculation Procedures for Simple Capacity
and Total Capacity

As already pointed out in Sect. 1.2, roundabout performance indicators as a whole
are, in technical practice, “simple capacity” SC and “whole capacity” or “total
capacity” TC.

The determinations of SC and TC are not straightforward, and they require the
development of suitable computational procedures.

8 The iterative results and the final results are all given approximated integers.
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For the sake of simplicity, but without narrowing our general aims, we will
now present these procedures for a four-legged roundabout with an assigned traf-
fic demand (initial condition) represented by the flow vector [Qei] and by matrix
PO/D (i.e., matrix MO/D).

To calculate simple capacity means to determine a specific condition that is char-
acterized by equivalence between demand and capacity values for at least one of the
entries. This is done by means of a uniform increase in entering flow from an initial
traffic state.

1) we calculate the disturbing flows (Qdi) for each entry starting with the demand
vector [Qei] and traffic percentage matrix PO/D;

2) for each entry, we express the entering flow and disturbing flow values under sat-
uration conditions as the multiplication of traffic demand by a suitable multiplier
(different for each entry), i.e., Q*

ei = δiQei and Q*
di = δiQdi.

Thus, the generic capacity formula used for the calculation can be written as
δiQei = fi(δiQdi). Solving these equations, we obtain the values of the multipli-
ers δi (one for each entry) of traffic demands at legs when these same legs are
saturated;

3) we multiply demand vector [Qei] by the smallest multiplier that we have found
(corresponding to the first one that reaches saturation), and, thus, we determine
simple capacity SC.

To determine total capacity, we use the following iterative method:

1) we assume an arbitrary, first-attempt, entering flow vector [Q(1)
ei ] = [Q(1)

e1 Q(1)
e2

Q(1)
e3 Q(1)

e4 ];

2) for entry 1 we determine the disturbing traffic Q(1)
d1 as a function of the first

attempt flow vector [Q(1)
ei ] and matrix [Pij], and, by the capacity formula used,

we determine a new value of entering flow 1 Q(2)
e1 ;

3) for entries 2, 3, and 4, we proceed similarly. First, we determine the disturbing
flows (using the most “updated” entering flows for each leg, i.e., those obtained
with the application of the iterative method). Then, by means of the capacity
formula, we determine the new entering flow values, obtaining for them a second
vector [Q(2)

ei ];
4) we repeat the calculation process until we obtain, for two successive steps, two

entering flow vectors that are equal, i.e., when [Q(k−1)
ei ] = [Q(k)

ei ].

The entering flow vector thus determined represents the number of the enter-
ing vehicles from each leg when all the entries are simultaneously saturated. The
roundabout total capacity value TC is the sum of all these flows.

Finally, it is worth noting that total capacity is a function only of the traffic per-
centage matrix PO/D, and, therefore, it can be determined starting with an arbitrary
demand vector. In other words, with equal percentage distribution, total capacity



54 2 Capacity Evaluation

vector is univocal, independently of the demand vector used for the first calculation
step (first-attempt demand vector). Contrary to total capacity, it should be noted that
simple capacity is function of both traffic demand and its percentage distribution
(vector [Qei] and matrix PO/D).

2.6.1 A Worked Example

We will now present a example calculation of simple capacity and total capacity.
Consider a four-legged roundabout with a traffic percentage matrix PO/D of:

PO/D =

⎡

⎢⎢
⎣

0.00 0.15 0.75 0.10
0.19 0.00 0.24 0.57
0.63 0.15 0.00 0.22
0.19 0.74 0.07 0.00

⎤

⎥⎥
⎦

We use the Brilon-Bondzio (2.1) formula as the capacity formula.

C = A − B · Qc

This formula is specialized for roundabouts with a single-lane circle and single-
lane legs (A = 1218, B = 0.74).

Traffic demand vector (pcu/h) is equal to

[Qei] = [160 100 240 200]

2.6.1.1 Simple Capacity Calculation

To calculate simple capacity, we first determine the circulating flow vector [Qci]
(pcu/h). (Eq. (1.12) in Chap. 1).

[Qci] = [
198 150 92 206

]

For each entry, we look for the initial flow multiplier that causes saturation at the
entry by means of the relationship δiQei = A–B · δiQci, which, when applied to the
case under examination, becomes

δ1 · 160 = 1218 − 0.74 · δ1 · 198
δ2 · 100 = 1218 − 0.74 · δ2 · 150
δ3 · 240 = 1218 − 0.74 · δ3 · 92
δ4 · 200 = 1218 − 0.74 · δ4 · 206
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from which we have

δ1 = 3.97
δ2 = 5.77
δ3 = 3.95
δ4 = 3.46

Multiplying traffic demand [Qei] by the smaller multiplier (δ4 = 3.46), we deter-
mine the entering flow values that correspond to the first roundabout congestion
event for a uniform increase in the flows (i.e., simple capacity) [Q(SC)

ei ] = [SC]
(pcu/h):

[Q(SC)
ei ] = [SC] = [553 346 829 691]

Under traffic conditions for which entering flow values are equal to simple capac-
ity, we can also determine the circulating flow values (pcu/h) in front of the entries.

[Q(SC)
ci ] = [684 518 318 712]

capacities (pcu/h)
[C(SC)] = [712 834 983 691]

and reserve capacities (pcu/h)

[RC(SC)] = [159 489 153 0]

It is worth noting that, under this traffic condition, the reserve capacity is zero
for the leg (in the case under examination, leg n◦ 4) that reaches the saturation state
first.

2.6.1.2 Total Capacity Calculation

To calculate total capacity, we can randomly choose the first-attempt, entering flow
vector.

For the case under examination, we assume

[Q(1)
ei ] = [100 220 300 300]

Then, we determine the circulating volume in front of entry 1

Q(1)
c1 = (P42 + P43) · Q(1)

e4 + P32 · Q(1)
e3 = (0.74 + 0.07) · 300 + 0.15 · 300 = 288

and, by the capacity formula, a new entering flow value at leg 1 (in pcu/h)

Q(2)
e1 = 1218 − 0.74 · Q(1)

c1 = 1218 − 0.74 · 288 = 1005 pcu/h
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We proceed similarly for entries 2, 3, and 4. We use the “most updated” entering
traffic flows coming from the various legs to calculate the conflict flows:

Q(1)
c2 = (P13 + P14) · Q(2)

e1 + P43 · Q(1)
e4 = (0.75 + 0.10) · 1005 + 0.07 · 300

= 875 pcu/h
Q(2)

e2 = 1218 − 0.74 · Q(1)
c2 = 1218 − 0.74 · 875 = 570 pcu/h

Q(1)
c3 = (P24 + P21) · Q(2)

e2 + P14 · Q(2)
e1 = (0.57 + 0.19) · 570 + 0.10 · 1005

= 534 pcu/h
Q(2)

e3 = 1218 − 0.74 · Q(1)
c3 = 1218 − 0.74 · 534 = 823 pcu/h

Q(1)
c4 = (P31 + P32) · Q(2)

e3 + P21 · Q(2)
e2 = (0.63 + 0.15) · 823 + 0.19 · 570

= 750 pcu/h
Q(2)

e4 = 1218 − 0.74 · Q(1)
c4 = 1218 − 0.74 · 750 = 663 pcu/h

Thus, we obtain a second entering flow vector (pcu/h)

[Q(2)
ei ] = [1005 570 823 663]

We proceed similarly, and we obtain

[Q(3)
ei ] = [729 725 756 680]

[Q(4)
ei ] = [727 726 756 680]

[Q(5)
ei ] = [727 726 756 680]

The iterative process converges very rapidly. The entering flow vectors deter-
mined for steps (4) and (5) are equal, and they represent the number of vehicles that
each leg is able to serve when all the legs are saturated.

The sum of all these flows provides the roundabout total capacity TC, which is
2888 pcu/h.
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Chapter 3
Waiting Phenomena at Steady State
and Non-steady State Conditions

To calculate waiting times, queue lengths, and the number of vehicles in the system,1

it is possible to consider roundabout entry lanes as channels of an ordinary system
examined by means of the mathematical queuing theory (Fig. 3.1).

Therefore, for the elements shown in Fig. 3.1 and for the specific case being
considered here, we have that2:

– the arrival and departure processes, which are made up of a events that are gen-
erally represented by random instants (flows of events), are characterized on the
basis of their respective traffic count laws [1];

– the service point is located on the entry yielding lines.

The service method (service mechanism) consists of waiting for a time gap in
the traffic stream flowing on the circulatory roadway that is sufficient to insert
one or more vehicles in sequence into the roundabout (gap-acceptance [2]). On the
basis of this service mechanism, the service time proprieties Ts are established in
probabilistic terms (probabilistic distribution).

– the waiting organization (queue discipline) requires that the users be served on
the basis of their arrival time in the system (sometimes called “first come, first
served” (FCFS), but more frequently referred to as “first in, first out” (FIFO);

– the number of queuing users can be high (unlimited longitudinal capacity of the
channel). Once in the queue, a vehicle cannot leave it without entering and exiting
from the roundabout.

In the remaining part of this chapter, first, we will review some results of
stochastic and deterministic theory about waiting phenomena.

Then, we will present a general heuristic criterion that allows the evaluation
of the system state variables at any operational conditions of the entries (i.e.,
undersaturation, saturation, and oversaturation).

1 We recall that the definitions of these state variables were given in Sect. 1.3.
2 Examining the elements shown in Fig. 3.1, the queuing theory terms are reported in brackets.

59R. Mauro, Calculation of Roundabouts, DOI 10.1007/978-3-642-04551-6_3,
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Fig. 3.1 Schematic diagram of a queuing system

The above-mentioned method uses transition relationships between results
obtained with the probabilistic and deterministic approaches.

Finally, in the next chapter, the criteria and the methods are applied to the study
of roundabouts that have time-dependent traffic demands; in particular, we will con-
sider roundabouts with traffic peaks that occur between two steady-state periods
of flow.

3.1 Some Results of Probabilistic Analysis of Queues

From the probabilistic theory of queuing, we will now review some definitions and
fundamental relationships for the applications.

We define traffic intensity or degree of saturation as the ratio ρ of traffic demand
Qe at an entry to capacity C of the same entry3

ρ = Qe

C
(3.1)

If E[Ts] is the mean of service time Ts, given the meaning of C and Ts, we can
obtain

E[Ts] = 1

C
(3.2)

Recalling Eq. (1.17) of Chap. 1, by which we defined reserve capacity (RC =
C − Qe), from Eqs. (3.1) and (3.2), we have

ρ = 1 − RC

C
(3.3)

Therefore, the entry condition can be characterized in terms of RC or of ρ as
shown in Table 3.1.

3 For simplicity notation, in this chapter we omit the subscripts to the flows and capacities relative
to the generic entry “i”.
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Table 3.1 Reserve capacity RC, degree of saturation ρ and entry states conditions

Undersaturated entry Saturated entry Oversaturated entry

RC > 0 RC = 0 RC < 0
ρ < 1 ρ = 1 ρ > 1

If we indicate the average time spent in the system with E[ws], using Eq. (1.20)
of Chap. 1 (ws = wc + Ts) and Eq. (3.2), above, we have the following equation
for the propriety of the mean as a linear operator:

E[ws] = E[wc] + E[Ts] = E[wc] + 1

C
(3.4)

In addition, to calculate the average number E[Ls] of vehicles waiting in the
system, it is necessary to know the relationship that exists between E[Ls], Qe, and
E[ws] under steady-state conditions (first formula by Little):

E[Ls] = Qe · E[ws] (3.5)

Equation (3.5) can briefly be accounted for as follows. During the waiting time
ws of a generic vehicle, the number of vehicles that enter the system is equal to:

Ls = Qe · ws (3.6)

Under conditions of statistical equilibrium, Qe results are time-independent, so
we can average the terms of Eq. (3.6) to obtain Eq. (3.5).

A relationship that is homologous to Eq. (3.6) can be written for the queue length
Lc, obtaining Lc = Qe·wc.

3.1.1 Some Remarkable Results

We will now present some results of the queuing theory relative to unsignalized
intersections at statistical equilibrium (steady-state conditions of the system).

First, we must characterize the demand flow Qe probabilistically and specify the
service mechanism on which the determination of service time Ts depends.

In this connection, it is possible to use for roundabouts – as for any type of
unsignalized intersections – different methods for evaluating Ts.

For their detailed descriptions, see [2], where each method for calculating Ts is
presented, along with the formulas for the averages E[ws] and E[Ls]. In current
practice, however, the most widespread service mechanism is the one described
below.

Consider A and B to be the first two vehicles in the system. Assume that vehicle
A uses an interval �t equal to or slightly greater than the critical gap Tc for its
maneuver. Vehicle B’s time Ts occurs between the moment that it arrives at the
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yielding line and the moment it enters the circulatory roadway. Thus, for B, a time
elapses that is equal to the sum of: the interval �t–Tc + the possible successive gaps
between the circulating vehicles rejected by B + the critical gap Tc. This sum is the
service time Ts of vehicle B.

If Ts is determined in this way, it is not possible to model, for more than one
vehicle, a service that is provided with continuity inside the same time interval and
in sequence, i.e. without interruptions of the entering process into the circulatory
roadway.

With the service procedures just recalled, the well-known P-K relationships
(from the authors Pollaczeck-Khinchine) [3] relative to queuing theory can be easily
used. According to these relationships:

E[ws] = E[Ts] + Qe · (E[Ts]
2 + VAR[Ts])

2 · (1 − Qe · E[Ts])
(3.7)

where E[Ts] and VAR[Ts] are the mean and the variance of service time, respec-
tively. If we assume a Ts distribution according to the Erlang function with a
parameter k, these two variables can be obtained from the following equations:

E[Ts] = Tc +
ekQcTc −

k∑

i=0

(kQcTc)i

i!

Qc

k∑

i=0

(kQcTc)i

i!

(3.8)

VAR[Ts] =
(k + 1) ·

[

ekQcTc −
k+1∑

i=0

(kQcTc)i

i!

]

kQ2
c

k−1∑

i=0

(kQcTc)i

i!

+ (E[Ts] − Tc)2 (3.9)

The parameter k of the Erlang function must be calculated on the basis of the
traffic flow rate Qc, which can be approximated according to the indications shown
in Table 3.2.

Remember that Qc for a roundabout is the circulating flow in front of the entry
considered (See Fig. 1.2 in Chap. 1).

Table 3.2 Parameter k value of the Erlang probability law versus of circulating flow Qc

Flow rate Qc [veh/h] K value

0–500 1
501–1000 2
1001–1500 3
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The relationship shown in Table 3.2 was determined experimentally. If Qc
(expressed as hourly volume) is known, the relationship can be used to determine k
as an integer value for intervals of Qc.

Equations (3.7), (3.8), and (3.9) are valid for Poissonian arrivals into the sec-
ondary stream Qe and service time Ts distributed in any way (depending on Tc
and on the characteristics of the main stream Qc, represented by the value selected
for k).

Evaluating E[ws] by means of Eq. (3.7), the average number E[Ls] of vehicles in
the system is given by Eq. (3.5) on the basis of which:

E[Ls] = Qe · E[ws] = Qe · E[Ts] + Q2
e · (E[Ts]

2 + VAR[Ts])

2 · (1 − Qe · E[Ts])
(3.10)

The non-approximated determination of the probability distribution Ls is not easy
to represent in closed form.

However, it is worth noting that doubling E[Ls] generally provides a high enough
percentile (Ls,90; Ls,95) estimation of Ls for the applications.

Finally, we recall that the results and the considerations outlined so far to calcu-
late E[ws] are always relative to the simple case of only two conflicting flows (Qe
and Qc) or to schemes that can be assimilated to it (See Fig. 1.2 in Chap. 1).

A simple, concise deduction of Eqs. (3.7) and (3.10) is reported in [3].
Equations (3.7) and (3.10) are now specified for two cases that are important for

practical applications.
First of all, we simplify the notations in Eq. (3.7) as:

Ts = s; E[Ts] = s; VAR [Ts] = V[s]

Therefore, we rewrite Eq. (3.7) as:

E[ws] = s + Qe · (s2 + V[s])

2 · (1 − Qe · s)
(3.11)

which, with Eqs. (3.1) and (3.2), becomes:

E[ws] = s +
ρ ·
(

s + V[s]

s

)

2 · (1 − ρ)
(3.12)

From Eq. (3.10), we have for the average number E[Ls] of vehicles in the system:

E[Ls] = Qe · s + Q2
e · (s2 + V[s])

2 · (1 − Qe · s)
(3.13)
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which, again for Eqs. (3.1) and (3.2), is:

E[Ls] = ρ +
ρ2 ·

(
1 + V[s]

s2

)

2 · (1 − ρ)
(3.14)

As we will see for some cases, with Eqs. (3.12) and (3.14) we have a straightfor-
ward characterization of the expressions of E[ws] and E[Ls].

3.1.1.1 Poissonian Arrivals and Exponential Service Times

Under this assumption, since the probability density function fTs(t) of the service
time Ts, is exponential, we have the following relationship between mean and
variance:

V[s] = s2 (3.15)

Then, Eq. (3.12) becomes:

E[ws] = s +
ρ
(

s + s2

s

)

2(1 − ρ)
= 2s − 2ρs + 2ρs

2(1 − ρ)
= s

(1 − ρ)
(3.16)

Finally, using Eq. (3.2), we have:

E[ws] = 1

C · (1 − ρ)
(3.17)

From Eq. (3.14), we have for E[Ls]:

E[Ls] = ρ +
ρ2 ·

(

1 + s2

s2

)

2(1 − ρ)
= ρ − ρ2 + ρ2

1 − ρ
= ρ

1 − ρ
(3.18)

3.1.1.2 Poissonian Arrivals and Deterministic Service Times

This occurs when the service is regular, i.e., each waiting vehicle spends the same
time at the head of the queue to enter the circulatory roadway.

This means that

V[s] = 0 (3.19)

Then, taking into account Eq. (3.2), Eq. (3.12) becomes:

E[ws] = s + ρ · s

2 · (1 − ρ)
= 1

C
·
[

2 − ρ

2 · (1 − ρ)

]
(3.20)
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Table 3.3 Average values of state variables according to statistical equilibrium

Queue System

E[wc] E[Lc] E[ws] E[Ls]

Poissonian arrivals;
exponential service
times

ρ

C · (1 − ρ)

ρ2

(1 − ρ)

1

C · (1 − ρ)

ρ

(1 − ρ)

Poissonian arrivals;
constant service
times

ρ

2 · C · (1 − ρ)

ρ2

2 · (1 − ρ)

2 − ρ

2 · C · (1 − ρ)

2ρ − ρ2

2 · (1 − ρ)

From Eq. (3.14), we can write for E[Ls]:

E[Ls] = ρ + ρ2

2(1 − ρ)
= 2ρ − 2ρ2 + ρ2

2(1 − ρ)
= 2ρ − ρ2

2(1 − ρ)
(3.21)

Starting once again with Eqs. (3.7) and (3.10), expressions for the averages E[wc]
and E[Lc] can be easily derived for the waiting time in the queue and queue length.

The expressions of the average values so far recalled are shown in Table 3.3.

3.1.2 Concluding Remarks

To conclude this section, Fig. 3.2 shows the graphs of Eqs. (3.17) and (3.18).
We can note that the behavior of the average time spent in the system E[ws] and

of the average number of users in the system E[Ls] are similar (as is predictable on
the basis of Eq. (3.5)). They are both characterized by a knee, beyond which, the

Fig. 3.2 Averages E[ws] and E[Ls] versus degree of saturation ρ (Poissonian arrivals; exponential
service times; one-queue system)
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gradients grow rapidly when traffic intensity ρ increases, and a vertical asymptote
appears when ρ = 1

lim
ρ→1

E[ws] = ∞ (3.22)

lim
ρ→1

E[Ls] = ∞ (3.23)

We have similar behaviors for the queue, for E[wc], and for E[Lc].
We can easily note that, if E[ws] and E[Ls] are expressed as a function of reserve

capacity, we can use Eqs. (3.17) and (3.18) to obtain the curves shown in Fig. 3.3,
where the asymptote coincides with the ordinate axis.

As we will soon see with an example, this behavior of E[ws] and E[Ls] derives
directly from the two basic conditions of stationariness, i.e., from the assumption
that the entering traffic demand remains constant indefinitely.

In addition, this asymptotic behavior of E[ws] and E[Ls] is not only characteristic
of queuing systems with Poissonian arrivals and exponential service times.

In fact, all the queuing systems that may be modeled by Eqs. (3.7) and (3.10)
show a similar behavior for E[ws] and E[Ls], as can be easily seen from Eqs. (3.12)
and (3.14) for ρ which tends to be unity.

Consider an entry that is systematically saturated, i.e., Qe(t) = C(t) and Qe
(t+�t) = Qe(t) for any �t.

For example, Qe is equal to 1440 veh/h = 0.40 veh/s, i.e., on average, 0.4 arriving
vehicles are recorded for each second.

C = Qe indicates that there is, on average, 0.4 vehicle served (in the case vehi-
cles entering the circulatory roadway of a roundabout) for each second used for the
service.

For T = 10000 s, about 4000 arrivals are recorded. Due to the random variations
of the system, the arrivals of 4000 vehicles will not be distributed uniformly over T,
which means that sometimes there will be a queue, and sometimes there will not be
a queue.

Fig. 3.3 Averages E[ws] and E[Ls] versus Reserve Capacity RC (Poissonian arrivals; exponential
service times; one-queue system)



3.2 Deterministic Analysis of Queues 67

For the same reasons, the time gaps used for the service will have different val-
ues and will not be localized uniformly in T = 10000 s of system observation. In
addition, their overall duration will be shorter than T.

For example, if we assume that the overall duration is 9000 s, the number of
arrivals into the roundabout is therefore of 9000·C = 9000·0.4 = 3600 vehicles.

In conclusion, at the end of the T during which 4000 vehicles approach the inter-
section along the leg considered, and 3600 vehicles enter the roundabout, there
would be 400 vehicles waiting in the queue for entry, which is an estimation of
E[Ls].

It is now straightforward to understand that, when all the other conditions
are equal, if T increases indefinitely, even E[Ls] tends to increase indefinitely
(Eq. (3.23)). This is consistent with the presence of the asymptote that occurs when
ρ = 1, as predicted by Eq. (3.17) (See Fig. 3.2).

From Eq. (3.5), the presence of the asymptote when ρ = 1 is also justified
for E[ws].

3.2 Deterministic Analysis of Queues

The analyses are based on the cumulative time value t of arrivals (at legs) A(t) and
departures D(t).

A departure from the queue occurs when a vehicle waiting in second position
moves to the head of the queue, close to the yielding line.

When there is no queue, the term departure in this context also refers to the travel
of a vehicle from the head of the traffic stream to the waiting position to enter the
intersection.

In conclusion (See Fig. 3.4), a departure is recorded when a vehicle crosses the
imaginary line (a–a) that marks the upstream limit to the service position.

Since traffic counts are discrete, A(t) and D(t) are step functions. Instead of these,
the respective continuous approximations are generally used (fluid approximations,
Fig. 3.5).

The continuous approximation derives from the continuous description (or
continuous at intervals) of traffic demand Qe(t) and entry capacity C(t).

From the definition of volume, the arrival rate is therefore equal to

dA(t)

dt
= Qe(t) ∀t (3.24)

With the deterministic approach, Qe(t) and C(t) are not subject to random
variations.

Under this assumption:

– the determinations of Qe and C coincide with the mean values

Qe(t) = E[Qe(t)]; C(t) = E[C(t)] ∀t (3.25)
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Fig. 3.4 Priority system and service counter

– for the cumulative rate of departures it is straightforward to put:

a)
dD(t)

dt
= QD(t) = Qe(t) t ∈ (ti; tj) (3.26)

Fig. 3.5 Fluid approximation of the cumulative arrival and departure counts
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when, during an entire generic interval (ti; tj), the entry is undersaturated (e.g. Qe(t)
< C(t)) and at the initial instant there is no queue at the entry (e.g. Lc(ti) = 0)

b)
dD(t)

dt
= QD(t) = C(t) t ∈ (ti; tj) (3.27)

if during the entire generic interval (ti; tj), the entry is saturated or oversaturated
(e.g. Qe(t) ≥ C(t)) or if at the initial instant the queue L0 is present at entry
(e.g. Lc(ti) = L0). If Lc(ti) = L0 and C(t) > Qe(t), tj = f(L0; C(t)).

Once the behaviors of Qe(t) and C(t) are known, A(t) and D(t) are obtained by
integration from Eqs. (3.24), (3.26), and (3.27).

Starting with the curves A(t) and D(t) (See Fig. 3.6), the main indicators of the
waiting phenomenon can be calculated directly.

The length of the queue Lc(t) at a generic instant t is obtained as

Lc(t) = A(t) − D(t) (3.28)

Equation (3.28) expresses the preservation law of vehicles at legs, on the
basis of which the arriving vehicles can only leave the queue or stay in it
(A(t) = D(t) + Lc(t)).

As the queue method for entering the intersection is of the FIFO type
(See Sect. 1.3), the horizontal distance d between the curves A(t) and D(t) is the
waiting time in the queue wc for the vehicle that arrived at time t:

d = wc(t) (3.29)

Fig. 3.6 Cumulative arrival count A(t) and cumulative departure count D(t)
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It follows that the area S(aba) included between A(t) and D(t) is the total waiting
time in the queue Wc, i.e., regarding all the users who have entered the queue.

The calculation of Wc allows the evaluation of the mean waiting time wc as a
ratio between Wc and a suitable number of users represented by vehicles relative to
the pre-fixed time Tq = ti–tf:

w̄c = Wc
tf∫

ti
Qe(t)dt

=

tf∫

ti
[A(t) − D(t)]dt

tf∫

ti
Qe(t)dt

(3.30)

The use of the functions A(t) and D(t) also allows, as we will later see with a
worked example, the determination of the time Td inside which the effects of the
peak traffic can be observed, when this same peak is ended.

In the above-mentioned example, as it generally occurs in the analysis of the
performance indices of intersections, the demand Qe and capacity C are modeled
with step functions.

With Eqs. (3.24), (3.26), and (3.27), broken lines are obtained by which the
calculation (and implementation of the results which it gives) of the cumulative
arrival and departure values are very straightforward due to the use of elementary
geometrical considerations.

So far, all that has been said about departures from the queue can be repeated for
departures from the system (See Fig. 1.5, Chap. 1). In fact, the waiting time in the
queue wc, as we have already seen, is equal to the horizontal distance between the
cumulative counts A(t) and D(t) (See Fig. 3.6); in addition, the relationship between
the time spent in the system ws, service time Ts, and queuing time wc is expressed
by Eq. (1.20) from Chap. 1.

ws = wc + Ts = wc + 1

C
(3.31)

The cumulative count Ds(t) of the departures from the system is therefore
obtained instant by instant by moving the value of D(t) horizontally by a value equal
to Ts = 1/C.

3.2.1 A Worked Example

Consider an entry with a variable traffic demand. Capacity during the observation
period has a constant behavior.

To simplify the notation, the subscript for traffic demand, i.e., “e,” is omitted.
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Initial Data

The arrival flow rate at the legs is Q1 = 1600 veh/h from 6:45 to 7:00 AM. In
addition, it results that Q1 < C = 2000 veh/h.

During the period from 7:00 to 7:15 AM, the arrival rate increases to Q2 =
2400 veh/h, so Q2 >C.

From 7:15 to 7:30 AM, demand becomes Q3 = 2200 veh/h, and Q3 > C.
Finally, between 7:30 and 7:45 AM the arrival rate decreases to Q4 = 1200 veh/h,

so Q4 < C.
The volumes Q1, Q2, Q3, and Q4 and capacity C (rate of flowing vehicles) shown

in Fig. 3.7a cause (relationships (3.24), (3.26), and (3.27)), the curves of the cumu-
lative arrival values and of the cumulative departure values of the queue as functions
of time. The curves are represented, respectively, by the line indicated as “arrivals”
and by the “departures” line shown in Fig. 3.7b on the basis of the relationships:

Cumulative value of demand (arrivals) = Q · t (3.32)

Cumulative count of departures from the queue = C · t (3.33)

Number of Arriving Vehicles

The number of arriving vehicles between 6:45 and 7:00 AM is:

A1 = Q1 · t1 = 1600 veh/h · (0.25 h) = 400 veh

This number is equal to the area B1 of the bar diagram shown in Fig. 3.7a.
Similarly, for each of the remaining analysis periods, the cumulative counts A2,
A3, and A4 are determined for a total of 1850 vehicles in the 45 min considered.

Time of the Beginning of the Congestion

Congestion begins exactly when demand exceeds capacity (i.e., when the entry is
oversaturated), that is, when Q2 > C. This event is recorded at 7:00 AM.

Congestion Duration (Tq = tf – ti)

During the periods t2 and t3, the arriving flows exceed capacity C, while the queue
disappears in the interval t4 (See Fig. 3.7b) and remains for the duration Td (part of
t4):

Tq = t2 + t3 + Td (3.34)
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Fig. 3.7 Demand flow rate, cumulative arrival count and cumulative departure count at leg

In addition, in the unknown time Tq, the following vehicles must be cleared:
(Q2–C)·t2; (Q3–C)·t3; and Q4·Td; that is in all:

(Q2 − C) · t2 + (Q3 − C) · t3 + Q4 · Td

As in Td, the queue Lmax, present at the end of t3, is cleared
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(Q2 − C) · t2 + (Q3 − C) · t3 + (C − Q4) · Td = 0

and, therefore,

Td = (Q2 − C) · t2 + (Q3 − C) · t3
C − Q4

which, substituted into Eq. (3.34), gives

Tq = t2 + t3 + (Q2−C)·t2 + (Q3−C)·t3
C−Q4

=

= 0.25 + 0.25 + (2400−2000)·0.25 + (2200−2000)·0.25
2000−1200 = 0.69 h = 41.4 min

In other words, the queue that began at 7:00 o’clock AM disappears at
7:41:24 AM.

Maximum Number of Queuing Vehicles Lmax

The maximum number of queuing vehicles is recorded at the end of period t3 and is
equal to the cumulative value of demand rate that was not cleared during the period
t2 + t3.

Lmax = (Q2 − C) · t2 + (Q3 − C) · t3 =
= (2400 − 2000) · 0.25 + (2200 − 2000) · 0.25 = 150 veh

Maximum Duration of the Individual Delay wcmax

This delay refers to the vehicle that arrives at the end of the period t3, that is at 7:15
AM, and is equal to (See Fig. 3.7b)

wcmax = Q2·t2 +Q3·t3
C − t2 − t3 = Q2·t2 +Q3·t3−C·t2−C·t3

C =

= (Q2−C)·t2 +(Q3−C)·t3
C = (2400−2000)·0.25+(2200−2000)·0.25

2000 =
= 0.075 h = 4.5 min

Total Duration of the Delay Wc

Wc is represented by the area S of the cumulative diagram (Qe; C).
Wc = S = (Q2t2−Ct2)·t2

2 + (Q2t2 −Ct2)·t3
2 + [(Q2−C)·t2+(Q3−C)·t3]

2 · t3+
+ [(Q2−C)·t2+(Q3−C)·t3]

[
(Q2−C)·t2+(Q3−C)·t3

C−Q4

]

2 =
= (Q2t2 −Ct2)·(t2+t3)

2 + (Q2−C)·t2+(Q3−C)·t3
2

[
t3 + (Q2−C)·t2+(Q3−C)·t3

C−Q4

]
=

= [2400·0.25−2000·0.25]·(0.25+0.25)
2 + (2400−2000)·0.25+(2200−2000)·0.25

2 ·
·
[
0.25 + (2400−2000)·0.25+(2200−2000)·0.25

2000−1200

]
= 57.81 (h veh)
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Number of Delayed Vehicles NR

NR = C · Tq = 2000 · 0.69 = 1380 veh

Mean Delay for Each Vehicle Affected by the Disturbance wc

wc = Wc

NR
= 57.81

1380
= 0.041 h ∼= 2.5 min

Average Length of the Queue Lc

Lc = Wc

Tq
= 57.81

0.69
∼= 84 veh

3.2.2 Some Remarkable Results

The deterministic approach is used to analyze two important cases for the applica-
tions of practical interest.

3.2.2.1 First Remarkable Case and a Worked Example

Assume (See Fig. 3.8) that at the initial instant t0 of system observation, Lc(t0) =
Lc0 vehicles are present in the queue.

Traffic demand Qe(t) and capacity C(t) starting with t0 are systematically
assumed to be constant (Qe(t) = Qe and C(t) = C), with Qe > C (oversaturated
entry).

At the instant t, the cumulative arrival and departure counts are, on the basis of
Eqs. (3.24) and (3.27),

A(t) = A(t0) + Qe · T (3.35)

D(t) = D(t0) + C · T (3.36)

Since A(t0) – D(t0) = Lc0, we can use Eqs. (3.28), (3.35), and (3.36) to produce

Lc(t) = Lc0 + (Qe − C) · T (3.37)
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Fig. 3.8 Traffic demand, capacity, and cumulative arrival and departure values regarding the first
remarkable case

Recalling Eq. (3.1), Eq. (3.37) becomes

Lc(t) = Lc0 + (ρ − 1) · C · T (3.38)

By definition, the number of vehicles in the system Ls(t) (See Sect. 1.3) is

Ls(t) = Lc(t) + 1 (3.39)
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With Eq. (3.38), Eq. (3.39) becomes

Ls(t) = Ls0 + (ρ − 1) · C · T (3.40)

Ls(t0) = Ls0 = Lc0 +1 be the number of users in the system at the initial
instant t0.

The calculation of the average waiting time in the queue wc and of the time
spent in the system ws for the vehicles that arrived between t0 and t = t0 + T is
straightforward, i.e., the last vehicle in a queue with a length of Lc0 waits in the
queue for a time wc(t0) that, on the basis of Eq. (3.29), is equal to the segment bf in
Fig. 3.8:

wc(t0) = bf = Lco

C
(3.41)

Again, with Eq. (3.29), the waiting time in the queue wc(t) of the last vehicle that
reach the queue at t = t0 + T is (See Fig. 3.8)

wc(t) = cd = Lc(t)

C
(3.42)

and therefore, for Eq. (3.38),

wc(t) = Lc0

C
+ (ρ − 1) · T (3.43)

The mean wc (See Sect. 1.3, Eq. (1.22)) is

wc = wc(t0) + wc(t)

2
(3.44)

then, with Eqs. (3.41) and (3.43),

wc = 1

2

[
Lc0

C
+ Lc0

C
+ (ρ − 1) · T

]
= Lc0

C
+ (ρ − 1) · T

2
(3.45)

The average value wc is equal to the value of the waiting time of the vehicle that
arrives in the middle of the interval T.

Average value wc can also be obtained on the basis of Eq. (3.30) as a ratio
between the area S(bcdfb) and the number of vehicles that arrived in the waiting
queue between t0 and t = t0 + T:

wc = S(bcdfb)

Qe · T
(3.46)

Since the relationship between the average waiting time in the queue wc and the
time spent in the system ws is expressed by Eq. (3.4), since the number of users in
the system is Ls0 = Lc0 +1 (Eq. (3.39) with t = t0), from Eq. (3.45), we have:
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ws = Lc0

C
+ (ρ − 1) · T

2
+ 1

C
= Ls0

C
+ (ρ − 1) · T

2
(3.47)

To give an example of the application of the relationship obtained, assume that
Lc0 = 4 veh at t0.

Starting with t0, we also obtain Qe = 1100 veh/h = 0.306 veh/s, C = 980 veh/h =
0.272 veh/s, and, therefore, ρ = Qe/C = 1.125.

Now, we want to calculate the maximum length of the queue after T = 10 min =
600 s, the average waiting time in the queue wc, and the time spent in the system ws
for the vehicles that arrived during the peak period T.

With Eq. (3.38) we obtain

Lc(t) = Lc0 + (ρ − 1) · C · T = 4 + (1.125 − 1) · 0.272 · 600 = 24.4 veh

From Eq. (3.45)

wc = Lc0

C
+ (ρ − 1) · T

2
= 4

0.272
+ (1.125 − 1) · 600

2
= 52.21 s

From Eq. (3.47)

ws = Ls0

C
+ (ρ − 1) · T

2
= 5

0.272
+ (1.125 − 1) · 600

2
= 55.88 s

For Eq. (3.4), the difference ws − wc must be equal to the service time Ts =
1/C = 3.67 s; in fact, we have ws − wc = 55.88 − 52.21 = 3.67 s.

The just obtained value wc can be also calculated with the evaluation of the area
S(bcdfb) (See Fig. 3.8) by applying Eq. (3.46). We have

S(bcdfb) = 1
2 ·
[

Lc0
C + Lc(t)

C

]
·
[(

T − Lc0
C

)
+ Tcd

]
· C =

= 1
2 ·
[

4
0.272 + 24.4

0.272

]
·
[(

600 − 4
0.272

)
+ 89.71

]
· 0.272 =

= 1
2 · [14.71 + 89.71] · [(600 − 14.71) + 89.71] · 0.272 ∼= 9585 veh · s

and, therefore, with Eq. (3.46)

wc = S(bcdefb)

Qe · T
= 9585

0.306 · 600
= 52.21 s

Sometimes [4], the average waiting times wc and ws are expressed in a slightly
different way from Eqs. (3.45) and (3.47), because Lc0 and Ls0 are meant to be the
number of vehicles that a user who arrives at the initial instant t0 finds already in
the queue or in the system, respectively. Under this assumption, the initial length of
the queue Lc(t0) is then equal to Lc(t0) = Lc0 + 1; similarly, for Ls(t0), the result
is Ls(t0) = Ls0 + 1. Repeating the deductive procedure that led to Eqs. (3.45) and
(3.47), we can easily obtain
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wc = Lc0 + 1

C
+ (ρ − 1) · T

2
(3.48)

ws = Ls0 + 1

C
+ (ρ − 1) · T

2
(3.49)

3.2.2.2 Second Remarkable Case and Worked Examples

With the criteria presented so far, it is also easy to calculate the variables of the
waiting phenomenon associated with a traffic demand and capacity behavior of the
type shown in Fig. 3.9, i.e., at the end of the peak period T (i.e., the instant tp =
t0 + T), the entry oversaturation ends and the result is, starting with tp, systematically
Qe1 < C1 and C1 > C.

For Eqs. (3.24) and (3.27), the cumulative arrival count A(t) is the line (bcd); the
cumulative departure count D(t) is the line (afd).

The maximum queue length Lcmax and the maximum number of vehicles in the
system Lsmax are obtained at the end of the traffic peak (at tp = t0 + T) by means of
Eqs. (3.38) and (3.40), respectively.

Figure 3.9 shows how the waiting phenomenon continues, diminishing little by
little after the peak period T, for another interval Td.

Only at the end of Td (at the instant td), the queue is completely cleared, and
we can write Lc(td) = A(td) – D(td) = 0. Td is obtained from the relationship (See
Fig. 3.9)

Td = Lcmax

C1 − Qe1
(3.50)

From Eqs. (3.38) and (3.1), Eq. (3.50) can be written

Td = Lc0 + (ρ − 1) · C · T

(1 − ρ1) · C1
(3.51)

To calculate the waiting time wc(t0) = wc0 = bg, Eq. (3.41) is valid, while
wc(tp) = wcmax can be easily obtained from Fig. 3.9.

wc max = ce = Lc max

C1
(3.52)

and, therefore, with Eq. (3.38)

wc max = Lc0 + (ρ − 1) · C · T

C1
(3.53)

To calculate the average waiting time wc for the vehicles that arrived during T,
Eq. (3.30) is used.
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Fig. 3.9 Traffic demand, capacity, and cumulative arrival and departure values for the second
remarkable case

In this case, the total waiting time Wc is equal to the area S(bcfgb):

Wc = Lcmax·wcmax
2 + (Lcmax+Lc0)·T

2 − 1
2 · Lc0 · Lc0

C =
= 1

2 · (A + B − D)
(3.54)
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where, expressing the terms of the second member of Eq. (3.54) with Eqs. (3.38)
and (3.53), A, B, and D are

A = [Lc0 + (ρ − 1) · C · T]2

C1
(3.55)

B = 2 · Lc0 · T + (ρ − 1) · C · T2 (3.56)

D = L2
c0

C
(3.57)

Having put

E = Qe · T (3.58)

with Eq. (3.30) we obtain

wc = 1

2 · E
· (A + B − D) (3.59)

To calculate the average waiting time in the queue wcq relative to all the delayed
vehicles, i.e., vehicles that arrived in the queue during the interval Tq = T + Td, we
must take into account the total waiting time in the queueW∗

c , which is equal to the
area S(bcdfgb). Thus we have (See Fig. 3.9)

W∗
c = Lcmax · Td

2
+ (Lcmax + Lc0) · T

2
− 1

2
· Lc0 · Lc0

C
(3.60)

Equation (3.30), with Eqs. (3.38) and (3.51), is written

W∗
c = 1

2
· (A∗ + B − D) (3.61)

where

A∗ = [Lc0 + (ρ − 1) · C · T]2

(1 − ρ1) · C1
(3.62)

while B and D are given by Eqs. (3.56) and (3.57), respectively.
If we put now

E∗ = Qe · T + Qe1 · Td (3.63)

that, for Eq. (3.51), becomes

E∗ = Qe · T + Qe1 · Lc0 + (ρ − 1) · C · T

(1 − ρ1) · C1
(3.64)

on the basis of Eq. (3.30), wcq is
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Fig. 3.10 Discharge process of peak traffic effects with the queue final length Lc1 greater than
zero

wcq = 1

2 · E∗ · (A∗ + B − D) (3.65)

If the effects of the peak period are considered to end when Lc1 vehicles are
present in the queue (See Fig. 3.10), Eq. (3.50) of Td is modified as

T′
d = Lcmax − Lc1

C1 − Qe1
= Lcmax − Lc1

C1 · (1 − ρ1)
(3.66)

because, by Eq. (3.1), ρ1 = Qe1/C1.
The relationship that gives the total waiting time Wc in this case is written taking

into account the area S(bcdeghb) (See Fig. 3.10), and it is

W∗∗
c = 1

2
· (A∗∗ + B − D) (3.67)

where

A∗∗ = [Lc0 + (ρ − 1) · C · T]2 − L2
c1

(1 − ρ1) · C1
(3.68)



82 3 Waiting Phenomena at Steady State and Non-steady State Conditions

since Lcmax is always given by Eq. (3.38) and T′
d by Eq. (3.66); again, B and D are

given by Eqs. (3.56) and (3.57), respectively.
Putting

E∗∗ = Qe · T + Qe1 · T
′
d = Qe · T + Qe1 · [Lc0 + (ρ − 1) · C · T] − Lc1

(1 − ρ1) · C1
(3.69)

with Eq. (3.69), for Eq. (3.30), the average waiting time in the queue w′
cq is

w′
cq = 1

2 · E∗∗ · (A∗∗ + B − D) (3.70)

where B and D are again given by Eqs. (3.56) and (3.57), respectively.
Finally, the calculation of the average time spent in the system ws for vehicles

that arrived during the peak T is conducted, on the basis of Eq. (3.31), adding the
mean value Ts of the service time Ts to the mean wc.

Ts is evaluated taking into account that (See Fig. 3.9) during the fraction T′ of T,
Ts = 1/C, while in T′′, Ts = 1/C1.

Therefore, for Ts as the weighted mean, we have

Ts =
1
C · C · T′ + 1

C1
· C1 · T′′

C · T′ + C1 · T′′ = T′ + T′′

C · T′ + C1 · T′′ (3.71)

where

T′ = T − (Lc0/C) (3.72)

T′′ = wcmax = Lcmax/C1 (3.73)

In conclusion, for Eq. (3.31) we have, with Eqs. (3.59) and (3.71)

ws = Ts + wc = T′ + T′′

C · T′ + C1 · T′′ + 1

2 · E
(A + B − D) (3.74)

With the same procedure that led to Eq. (3.71), we can obtain the mean values Tsq

and T′
sq of service time relative to all the delayed vehicles, in the case of complete

clearance of the queue at the end of the interval Td (Eq. (3.50)) and in the case of a
queue Lc1 greater than zero at the end of T′

d (Eq. (3.66)), respectively.
Thus, we have the following relationship:

Tsq =
1
C · C · T′ + 1

C1
· C1 · Td

C · T′ + C1 · Td
= T′ + Td

C · T′ + C1 · Td
(3.75)
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where T′ and Td are given by Eqs. (3.72) and (3.50), respectively.

T′
sq =

1
C · C · T′ + 1

C1
· C1 · T′

d

C · T′ + C1 · T′
d

= T′ + T′
d

C · T′ + C1 · T′
d

(3.76)

where T′ and T′
d are given by Eqs. (3.72) and (3.66), respectively.

In conclusion, on the basis of Eq. (3.31), with Eqs. (3.65) and (3.75), we have
the average time spent in the system

wsq = Tsq + wcq = T′ + Td

C · T′ + C1 · Td
+ 1

2 · E∗ (A∗ + B − D) (3.77)

Similarly, again on the basis of Eq. (3.31), with Eqs. (3.70) and (3.76), we obtain:

w′
sq = T′

sq + w′
cq = T′ + T′

d

C · T′ + C1 · T′
d

+ 1

2 · E∗∗ (A∗∗ + B − D) (3.78)

As an example, we consider the case of an entry for which there are Lc0 = 4 veh
queuing at time t0. We refer here to Fig. 3.9.

In T = tp – t0 = 15 min = 900 s, for the arrival demand and capacity we have,
Qe = 1100 veh/h = 0.306 veh/s and C = 980 veh/h = 0.272 veh/s, respectively, and,
therefore, ρ = Qe/C = 1.125.

Starting with tp, we have Qe1 = 850 veh/h = 0.236 veh/s and C1 = 1010 veh/h =
0.281 veh/s, and, therefore, ρ1 = Qe 1/ C1 = 0.840.

At the end of the peak period T, the maximum queue length Lcmax (Eq. (3.38)) is
recorded

Lc max = Lc0 + (ρ − 1) · C · T = 4 + (1.125 − 1) · 0.272 · 900 = 34.6 veh

and the maximum waiting time in the queue wcmax (Eq. (3.52)) is

wc max = Lc max

C1
= 34.6

0.281
= 123.13s ∼= 2 min

The average waiting time in the queue wc for the vehicles that arrived during the
peak period T is evaluated by calculating, with Eqs. (3.55), (3.56), and (3.57), the
quantities A, B, and D, which must be inserted into Eq. (3.59):

A = [Lc max]2

C1
= 34.62

0.281
= 4260.36 veh · s

B = 2 ·Lc0 ·T+(ρ−1) ·C ·T2 = 2 ·4 ·900+(1.125−1) ·0.272 ·9002 = 34740 veh ·s
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D = L2
c0

C
= 42

0.272
= 58.82 veh · s

wc = 1

2 · Qe · T
· (A + B − D) = 1

2 · 0.306 · 900
· (4260.36 + 34740 − 58.82) =

= 70.70s = 1.18min

The average time spent in the system relative to the vehicles that arrived during
the traffic peak, ws, is obtained with Eq. (3.74), once that by Eqs. (3.72) and (3.73)
the periods T′ and T′′ are evaluated and, therefore, with them, according to Eq.
(3.71), the mean service time Ts

T′ = T − (Lc0/C) = 900 − (4/0.272) = 885.3 s

T′′ = wc max = 123.13 s

Ts = T′ + T′′

C · T′ + C1 · T′′ = 885.29 + 123.13

0.272 · 885.29 + 0.281 · 123.13
= 3.66 s

ws = Ts + wc = 3.66 + 70.70 = 74.36 s

The duration of the interval Td, where the effects are visible once the peak ends,
by Eq. (3.50), is

Td = Lc max

C1 − Qe1
= 34.6

0.281 − 0.236
= 768.89 s

Having determined the value of Td, it is possible to calculate E∗ (Eq. (3.63))
and, once A∗ has been evaluated by Eq. (3.62), Eq. (3.65) can be used to obtain the
average waiting time in the queue wcq relative to all the vehicles that arrived during
the period (Tq = T + Td), (See Fig. 3.9).

Therefore, we have

E∗ = Qe · T + Qe1 · Td = 0.306 · 900 + 0.236 · 768.89 = 456.86 veh

A∗ = [Lc max]2

(1 − ρ1) · C1
= 34.62

(1 − 842) · 0.281
= 26627.22 veh · s

and by them, with B and D calculated above,

wcq = 1
2·E∗ · (A∗ + B − D) = 1

2·456.86 · (26627.22 + 34740 − 58.82) =
= 67.10 s = 1.12 min



3.2 Deterministic Analysis of Queues 85

The average time spent in the system wsq relative to the vehicles that arrived dur-
ing Tq is given by Eq. (3.77), once known (with T′ = 885.29 s and Td = 768.89 s),
the mean service time Tsq (Eq. (3.75))

Tsq = T′ + Td

C · T′ + C1 · Td
= 885.29 + 768.89

0.272 · 885.29 + 0.280 · 768.89
= 3.62 s

Then we have

wsq = Tsq + wcq = 3.62 + 67.10 = 70.72 s = 1.18 min

If we consider that the effects of the peak period ends in presence of a queue
Lc1 at the end of the period T′

d (which is still affected by the demand peak in T,
Fig. 3.10), the extension of T′

d is obtained by Eq. (3.66). If we assume Lc1 = 3 veh
and use the data from this example, we obtain

T′
d = Lc max − Lc1

C1 − Qe1
= 34.6 − 3

0.281 − 0.236
= 702.22 s

The calculation of the average waiting time in the queues w′
cq and w′

sq requires
the evaluation of A∗∗ (Eq. (3.68)), E∗∗ (Eq. (3.69)), and T′

sq (Eq. (3.76)).
With the above-mentioned relationships, we have

A∗∗ = L2
c max

− L2
c1

(1 − ρ1) · C1
= 34.62 − 32

(1 − 0.840) · 0.281
= 26427.05 veh · s

E∗∗ = Qe · T + Qe1 · T′
d = 0.306 · 900 + 0.236 · 702.22 = 441.12 veh

T′
sq = T′ + T′

d

C · T′ + C1 · T′
d

= 885.29 + 702.22

0.272 · 885.29 + 0.281 · 702.22
= 3.62 s

with B and D already calculated, by Eq. (3.70), we obtain

w′
cq = 1

2·E∗∗ · (A∗∗ + B − D) = 1
2·441.12 · (26427.05 + 34740 − 58.82) =

= 69.26 s = 1.15 min

Knowing w′
cq and T′

sq, from Eq. (3.78) we obtain

w′
sq = T′

sq + w′
cq = 3.62 + 69.26 = 72.88 s = 1.21 min
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3.2.3 Further Expressions of the Average Waiting Times

The expressions of the mean times wc, wcq, and w′
cq given in the previous sections

were obtained from the waiting times only for the vehicles that arrived during the
period T and in the following period that was still affected by the peak demand.

Now, if we want to take into account all the vehicles included in the queue starting
with the beginning t0 of the peak period, it is obvious that the term D in Eqs. (59),
(65), and (70) must not be subtracted from the terms A and B in brackets. In addition,
the values of E, E∗, and E∗∗ must be added to the value Lc0 of the length of the
possible queue that may be present at the entry at the instant t0. Thus, we have

wc = 1

2 · (E + Lc0)
· (A + B) (3.79)

wcq = 1

2 · (E∗ + Lc0)
· (A∗ + B) (3.80)

w′
cq = 1

2 · (E∗∗ + Lc0)
· (A∗∗ + B) (3.81)

Even for the expressions of times spent in the system, Eqs. (3.74), (3.77), and
(3.78) are modified to take into account the possible presence of the queue at the
instant t0.

Also, the means of the service times must, in fact, be added to Eqs. (3.79), (3.80),
and (3.81). In the expressions (3.71), (3.75) and (3.76) of the above-mentioned
means, the interval T′ must be substituted for total T (See Fig. 3.10) to account
for the time (T–T′) used to serve the vehicles that form Lc0:

ws = Ts + wc = T + T′′

C · T + C1 · T′′ + 1

2 · (E + Lco)
(A + B) (3.82)

wsq = Tsq + wcq = T + Td

C · T + C1 · Td
+ 1

2 · (E∗ + Lc0)
(A∗ + B) (3.83)

w′
sq = T′

sq + w′
cq = T + T′

d

C · T + C1 · T′
d

+ 1

2 · (E∗∗ + Lc0)
(A∗∗ + B) (3.84)

Frequently [5], as indicators of the effects of traffic demand peaks, average con-
ventional values of waiting times are used (in the queue or in the system) obtained
as a ratio between total delays

W∗
c = 1

2
(A∗ + B) (3.85)

W∗∗
c = 1

2
(A∗∗ + B) (3.86)

and only the vehicles that arrived during the peak period T, equal to Qe·T.
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Using the same criterion, the mean service time must be calculated only in
relation to the above-mentioned vehicles. Thus, we have

Tsq = T′
sq = T + T′′

C · T + C1 · T′′ (3.87)

In conclusion, by Eqs. (3.85), (3.86), and (3.87), we have

wcq = 1

2 · Qe · T
· (A∗ + B) (3.88)

w′
cq = 1

2 · Qe · T
· (A∗∗ + B) (3.89)

wsq = Tsq + wcq = T + T′′

C · T + C1 · T′′ + 1

2 · Qe · T
· (A∗ + B) (3.90)

w′
sq = T′

sq + w′
cq = T + T′′

C · T + C1 · T′′ + 1

2 · Qe · T
· (A∗∗ + B) (3.91)

3.2.4 Concluding Remarks

The results illustrated in the previous sections were based on the following
assumptions:

– the cumulative arrival A(t) and departures D(t) counts are generally approximated
with a continuous process (fluid approximation) that, in the case of a succession
of periods with constant traffic demand and capacity, are continuous at intervals
(piecewise-linear);

– during a period of constant traffic demand Qe, the vehicles reach the leg at constant
intervent times τA = 1/Qe;

– during a period when capacity C is constant, the vehicles depart from the queue
(or the system) at constant time rates equal to a τD = 1/C.

The fluid approximation becomes even more valid when the system is congested.
We recall that congestion is recorded if the entry is oversaturated, saturated, or

undersaturated but starting with an initial state with a long queue.
During the congestion, the queue length is greater than unity, and the waiting

times are greater than the mean service time. Under these conditions, the values
of the discontinuities of A(t) and D(t) (equal to unity when there is an arrival or a
departure – Fig. 3.5) are small with respect to the mean values in the time of the same
functions, i.e., it follows that we have, for A(t) and D(t), small increases relative to
the progression of the processes. Similarly, we have small differences between the
continuous approximations and the starting relationships (step functions).
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Fig. 3.11 Generic behavior
of the average time spent in
the system versus the value of
saturation degree

The regularity assumptions of the arrival and departure processes become even
more plausible when the traffic conditions become heavier, since, at these con-
ditions, the random changes of the above-mentioned processes tend to diminish,
with the consequence that the prevailing effects are given by the means, while the
fluctuations around them tend to diminish. 4

Finally, it is worth noting that the solutions provided by the deterministic
approach belong to the type of time-dependent solutions of the queuing theory.
In fact, unlike the probabilistic solutions, they take into account both the finite
extension of the congestion periods of the system and the prolongation of peak
effects.

As an example of a time-dependent solution, Fig. 3.11 shows the generic behav-
ior of the average time spent in the system (provided by Eq. (3.49)) as the peak
interval T value increases when Ls0 = 0.

We will present further time-dependent solutions (not deterministic) in the
following section.

3.3 Time-Dependent Solutions and Waiting Phenomena

As we have already pointed out in the previous sections, the solutions provided by
the probabilistic approach are valid at a steady-state condition.

4 In queuing theory, the fluid approximation (deterministic approximation) has a wider meaning
than the one just recalled, since it involves the consideration of the relationship between the arrival
and departure process realizations and the respective levels (means affected by the previous values)
and the mean time values. About this aspect, see [3] and [7].
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For a real system, these conditions are only partially possible.
The above-mentioned solutions are considered to be acceptable approximations

for the entries “i” if the time Ti during which traffic demands Qei and capacity Ci
may be assumed to be constant is sufficiently wide and if the entry is undersaturated
in Ti and the traffic intensity ρi = Qei/Ci is suitably smaller than unity. 5

In conclusion, by the probabilistic results it is not possible to study situations in
which Qei is time-dependent, and it can also exceed capacity Ci in a specific peak
period.

Regarding the deterministic approach, in the observations presented in previ-
ous Sect. 3.2.4, we pointed out that the results become more reliable as the entry
becomes more oversaturated (in presence or absence of queues at the initial instant
of system observation), i.e., with the increase of ρi > 1. In fact, under this cir-
cumstance, the random effects on the state variables (queues and waiting times)
become smaller, and the expected values of the same stochastic state variables near
deterministic means.

In other words, for the conditions at which the entry is oversaturated with ρi > 1
but not with ρi >> 1, the deterministic approach cannot take into account the random
effects of the evolution of the waiting phenomenon in the real system, leading to the
systematic underestimation of the values of the state variables realizations.

Then, to describe the non-steady situations, i.e., variability Qei and/or oversatu-
ration of the entry, but with ρi not sufficiently greater than unity, the two approaches
– probabilistic and deterministic – so far described are not suitable.

In mathematical queuing theory, thorough discussions are available for these
cases. Some of them are capable of solving particular problems in a precise way,
others in approximate ways, but none of them is simple enough for practical
applications [3], [6], [7].

That is why, in the analysis of a system under steady-state conditions, we gen-
erally use heuristic criteria of transition from statistical solutions to deterministic
solutions. Thus, we obtain (for the calculation of queue lengths, number of users
in the system, and waiting times) relationships in which traffic intensity ρ and the
time T relative to the duration of system observation or the peak period appear as
independent variables.

More precisely, a state variable δ (e.g., Lc, Ls, wc, or ws) is calculated as
average <δ> for a fixed value of the interval T, suitably combining its expected
value E[δ] under statistical equilibrium conditions (steady-state conditions) with
its mean deterministic value δ, so that (See Fig. 3.12) the oblique asymptote
of the relationship <δ> = <δ(ρ)> coincides with the deterministic function that
yields δ.

The determination of <δ> = <δ(ρ)> may be performed in different ways.
The two following criteria are usually used.

5 For the value of Ti, see the indication included in footnote 4 of Chap. 1 and the following
Chap. 4.
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Fig. 3.12 Averages of E[δ], δ , and <δ> versus traffic intensity ρ

Given generic equal values of E[δ], δ, and <δ> (E[δ] = δ = <δ>), let x be
the distance between E[δ] and the vertical asymptote for ρ = 1, and let y be the dis-
tance between the curve <δ> = <δ(ρ)> (to be determined) and the half-line δ = δ(ρ)
that is its oblique asymptote.

Then, we can write

x = y (3.92)

or, alternatively,

x:1 = y:ρd (3.93)

In terms of traffic intensity, for Eq. (3.92), we have (See Fig. 3.12)

1 − ρe = ρd − ρT (3.94)

thus

ρe = ρT − (ρd − 1) (3.95)
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If we assume, instead, Eq. (3.93) we have

1 − ρe = ρd − ρT

ρd
(3.96)

thus

ρe = ρT

ρd
(3.97)

Starting with Eq. (3.95) or Eq. (3.97) and choosing explicit ρe and ρd values as
functions of E[δ] and δ, we have, for an assigned T, two (different) expressions of
<δ> = <δ(ρ)>.

Given the heuristic nature of the deductive criterion of the behavior of <δ> under
time-dependent conditions (i.e., non-steady), there are no specific reasons to prefer
one of the Eqs. (3.92) and (3.93) over the other (or other equations that may be used
to obtain the transition <δ> between E[δ] and δ with an asymptotic behavior to δ).

In the following sections, in accordance with the main trend in the technical
literature [4, 5], Eq. (3.92) will be used to obtain time-dependent solutions for the
average number of users in the system Ls, the queue length Lc, and the waiting times
ws and wc.

3.3.1 Time-Dependent Solutions for the Number of Users
in the System and in the Queue. A Worked Example

The behaviors of traffic demand Qe and capacity C are described in the previous
Sect. 3.2.2.1 (first remarkable case) (See Fig. 3.8).

For the average E[Ls] of the number of users in the system under a steady
condition, Eq. (3.18) is used

E[Ls] = ρ

1 − ρ
(3.18)

and, for the average Ls of the same state variable6 at the end of the period T of
system observation, Eq. (3.40) is used

Ls(t) = Ls0 + (ρ − 1) · C · T (3.40)

Now, to obtain the transition curve < Ls > between E[Ls] and Ls, we use Eq.
(3.92) or Eq. (3.95)

ρe = ρT − (ρd − 1) (3.95)

6 We recall that, in the deterministic approach, the value of a state variable coincides with the
average value calculated in the same instant and with the percentiles, regardless of their order.
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We recall (See Fig. 3.12) that ρe, ρd, and ρT are the values of traffic intensities
that result in

E[Ls] = Ls =< Ls > (3.98)

Therefore, with ρ = ρd and Eq. (3.40), we can use Eq. (3.98) to obtain

ρd = Ls − Ls0

C · T
+ 1 = < Ls > −Ls0

C · T
+ 1 (3.99)

and with ρ = ρe and Eq. (3.18), we can use Eq. (3.98) to obtain

< Ls >= ρe

1 − ρe
(3.100)

Substituting Eq. (3.99) into Eq. (3.95) we have

ρe = ρT − < Ls > −Ls0

C · T
(3.101)

When ρe is provided by Eq. (3.101), from Eq. (3.100) we have

< Ls > −
ρT − < Ls > −Ls0

C · T

1 − ρT + < Ls > −Ls0

C · T

= 0 (3.102)

Equation (3.102) provides an implicit definition of the transition curve < Ls >

between E[Ls] and Ls.
Limiting the validity of Eqs. (3.18) and (3.40) to the first quadrant of the plane (ρ;

means of Ls), where they have a physical meaning (See Fig. 3.13), from Eq. (3.102),
solved with these restrictions, and since ρT is a current value of traffic intensity (ρ =
ρT), we have

< Ls >= 1

2

(√
A2 + B − A

)
(3.103)

with

A = (1 − ρ) · C · T + 1 − Ls0 (3.104)

B = 4(Ls0 − ρ · C · T) (3.105)

To give an example of the application of Eq. (3.103), consider the following data
(See Fig. 3.8): at the initial time t0, we obtain Ls0= 5 veh; starting with t0, Qe =
1100 veh/h = 0.306 veh/s, C = 980 veh/h = 0.272 veh/s, and, thus, ρ = Qe/C =
1.125. The interval of the system observation is assumed to be T = 10 min = 600 s.
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Fig. 3.13 Domains of time-dependent solutions for the number Ls of users in the system

For < Ls > at t = t0 + T , the quantities A and B are evaluated using Eqs. (3.104)
and (3.105)

A = (1 − ρ) · C · T + 1 − Ls0 = (1 − 1.125) · 0.272 · 600 + 1 − 5 = −24.4 veh
B = 4 · (Ls0 + ρ · C · T) = 4 · (5 + 1.125 · 0.272 · 600) = 754.4 veh

and, therefore, having obtained A and B, we get

< Ls >= 1

2

(√
A2 + B − A

)
= 1

2

(√
( − 24.4)2 + 754.4 + 24.4

)
= 30.57 veh

Following the same procedure that led to Eq. (3.103), it is easy to deduce the
transition relationship between the mean of the queue length E[Lc] under steady-
state conditions (See Table 3.3)

E[Lc] = ρ2

1 − ρ
(3.106)

and the mean deterministic value Lc (Eq. (3.38))

Lc(t) = Lc0 + (ρ − 1) · C · T (3.38)

thus we have for the time-dependent relationship for < Lc >

< Lc >= 1

2

(√
D2 + E − D

)
(3.107)
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with

D = (1 − ρ) · (C · T)2 − C · T · Lc0 + 2 · (Lc0 + ρ · C · T)

C · T − 1
(3.108)

E = 4 · (Lc0 + ρ · C · T)2

C · T − 1
(3.109)

3.3.2 Time-Dependent Solutions for the Average Time Spent
in the System and in the Queue. A Worked Example

We refer here to the behaviors of traffic demand Qe and capacity C illustrated in
Sect. 3.2.2.1 (See Fig. 3.8); we follow the same procedure illustrated in the same
section to obtain the expression of <Ls>.

Therefore, we use Eq. 3.17 for the expected value E[ws] of the average time spent
in the system under steady-state conditions

E[ws] = 1

C
· 1

(1 − ρ)
= 1

C
·
(

1 + ρ

1 − ρ

)
(3.17)

and we use Eq. 3.49 for the deterministic mean of the same state variable7

ws = Ls0 + 1

C
+ (ρ − 1) · T

2
(3.49)

Now, we use Eq. (3.93) or Eq. (3.95) to obtain the transition curve < ws>

between E[ws] and ws

ρe = ρT − (ρd − 1) (3.95)

We recall that (See Fig. 3.12) ρe, ρd, and ρT are values of traffic intensity in
correspondence of which it results

E[ws] = ws =<ws> (3.110)

Therefore, with ρ = ρd and Eq. (3.49) and using Eq. (3.110), we have

ρd = 2

T
·
(

<ws> − Ls0 + 1

C

)
+ 1 (3.111)

7 We recall that ws is the mean of the times spent in the system for vehicles that queue up during
the interval T of system observation.
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and with ρ =ρe and Eq. (3.17) and using Eq. (3.110) again

<ws> = 1

C
·
(

1 + ρe

1 − ρe

)
(3.112)

Substituting Eq. (3.111) into Eq. (3.95) we have

ρe = ρT + 2

T
·
(

Ls0 + 1

C
− <ws>

)
(3.113)

Using the value of ρe from Eq. (3.113) with Eq. (3.112), we can write

<ws> − 1

C
·
⎛

⎝1 +
ρT + 2

T ·
(

Ls0+1
C − <ws>

)

1 − ρT − 2
T ·

(
Ls0+1

C − <ws>
)

⎞

⎠ = 0 (3.114)

Equation (3.114) implicitly defines the transition curve <ws> between E[ws] and
ws. Limiting the validity of Eqs. (3.17) and (3.49) to the first quadrant of the plane
(ρ; means of ws), where they have a physical meaning, we can solve Eq. (3.114)
under these restrictions. Since ρT is a current value of traffic intensity (ρ = ρT), the
result is

<ws> = 1

2

(√
J2 + M − J

)
(3.115)

with

J = T

2
· (1 − ρ) − 1

C
· (Ls0 + 1) (3.116)

M = 4

C
·
[

T

2
· (1 − ρ) + 1

2
· ρ · T

]
(3.117)

Reusing the data of the worked example given in the previous Sect. 3.3.1, we cal-
culate the time-dependent mean of the average time spent in the system for vehicles
that joined the queue during the observation interval T = 10 min = 600 s.

Then, we use Eqs. (3.116) and (3.117) to calculate J and M

J = T
2 · (1 − ρ) − 1

C · (Ls0 + 1) = 600
2 · (1 − 1.125) − 1

0.72 · (5 + 1) = −59.56s

M = 4
C ·

[
T
2 · (1 − ρ) + 1

2 · ρ · T
]

= 4
0.272 ·

[
600
2 · (1 − 1.125) + 1

2 · 1.125 · 600
]

= 4411.76s

Finally, from Eq. (3.115), we have
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<ws> = 1

2

(√
J2 + M − J

)
= 1

2

(√
( − 59.56)2 + 4411.76 + 59.56

)
= 74.39 s

Applying the same procedure that led to Eq. (3.115) for the transition relation-
ship between the mean of the waiting time in the queue E[wc] under steady-state
conditions (See the formulas shown in Table 3.3.)

E[wc] = 1

C
·
(

ρ

1 − ρ

)
(3.118)

and the mean deterministic value wc

wc = Lc0

C
+ (ρ − 1) · T

2
(3.45)

we obtain the time-dependent relationship <wc>

<wc> = 1

2

(√
P2 + Q − P

)
(3.119)

with

P = 1

2
· (1 − ρ) − 1

C
· (Ls0 − 1) (3.120)

Q = 2 · T

C
·
[
ρ + 2 · Ls0

C · T

]
(3.121)

With the data of the worked example just developed, we evaluate the average
waiting time in the queue <wc>.

From Eqs. (3.120) and (3.121) we have

P = T
2 · (1 − ρ) − 1

C · (Ls0 − 1) = 600
2 · (1 − 1.125) − 1

0.272 · (5 − 1) = −52.21 s

Q = 2·T
C ·

[
ρ + 2·Ls0

C·T
]

= 2·600
0.272 ·

[
1.125 + 2·5

0.272·600

]
= 5233.56 s

and, therefore, with Eq. (3.119), for <wc>

< wc >= 1

2

(√
P2 + Q − P

)
= 1

2

(√
( − 52.21)2 + 5233.56 + 52.21

)
= 70.71 s

We note that

<ws> − <wc> = 74.39 − 70.71 = 3.68 s

This result is in accordance with Eq. (3.4) since <ws> – <wc> = 3.68 s, as
indicated by Eq. (3.2), is the value of the mean of service time E[Ts] = 1/C =
1/0.272 = 3.68 s.
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3.3.3 Generalized Time-Dependent Solutions

The previous relationships for the time-dependent mean values of the numbers of
users in the system, the queue length and waiting times (< Ls >, <Lc>, <ws>, and
<wc>) were obtained starting with the expressions of the expected values E[Ls],
E[Lc], E[ws], and E[wc] under steady-state conditions that are valid in the case of
Poissonian distributed leg arrivals and exponential service times (See Sect. 3.1).

The above-mentioned formulas for the process of arrivals and service times are
generally considered to be sufficient to represent most of the situations of practical
interest.

However, if one wants to have more general expressions than the ones already
given by Eqs. (3.103) and (3.115), for example for <Ls> and <ws>, respectively,
we can use Eqs. (3.13) and (3.11) to obtain the expected values E[Ls] and E[ws]
under steady-state conditions. From these equations, we can start the transition to
the deterministic means Ls and ws.

E[Ls] = Qe · s + Q2
e · (s2 + V[s])

2 · (1 − Qe · s)
(3.13)

E[ws] = s + Qe · (s2 + V[s])

2 · (1 − Qe · s)
(3.11)

where the mean s = E[Ts] and the variance V[s] = VAR[Ts] of the service time are
generally given by Eqs. (3.8) and (3.9).

In practical applications, s is evaluated, as usual, as s = 1/C, even though this
choice may lead to distorted and mutually non-congruent estimations of s and V[s],
while, for V[s], one may use the values obtained from traffic data that are available
in the literature.

Combining Eq. (3.11) with Eq. (3.49) and using the same procedure illustrated
in Sects. 3.3.1 and 3.3.2, we have, for example for < ws>, the expression that
generalizes Eq. (3.115) 8 using the simplifying assumption that Ls0 = 0.

<ws> = s + (s + V[s]) · ρ · C

2
+ T

4

[

ρ − 1 +
√

(ρ − 1)2 + 4 · ρ

C · T

]

(3.122)

In Fig. 3.14, Eq. (3.122) is shown using these values: s = 6 s; V[s] = 36 s; T =
10 min = 600 s; C = 540 veh/h = 0.15 veh/s.

Starting with Eqs. (3.11) and (3.13), relationships similar to Eq. (3.122) can be
obtained that generalize Eqs. (3.103), (3.107), and (3.119). Their deduction is left
to the keen reader.

8 The behaviors assumed for Qe and C are again, as in the other cases analyzed so far, the ones
shown in Fig. 3.8.
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Fig. 3.14 Generalized relationship <ws>= < ws(ρ) > for a case with Ls0 = 0

3.3.4 Time-Dependent Solutions for Traffic Peaks Between Two
Periods at Steady-State Conditions

We refer here to the behaviors of traffic demand and capacity shown in Fig. 3.15.
The conditions just before and just after the peak period are the same, and they

both show undersaturation

Qe0 = Qe1 C0 = C1 (3.123)

ρ0 = ρ1 < 1 (3.124)

At the instant t0, a traffic peak occurs, with Qe > Qe0 and C < C0, and the entry
is oversaturated (ρ > 1).

At the end of the peak period for which the duration is T, the entry instantly
returns to undersaturation conditions at t = t0 + T (Eq. (3.123)).

It is straightforward to note that the behaviors of the cumulative arrival A(t) and
departure D(t) values are of the type shown in Fig. 3.10 for this case when

Lc0 = Lc1 (3.125)

For the reader’s convenience, the above-mentioned behaviors are also shown in
Fig. 3.15.

Through the transformation of coordinates technique (Eq. (3.92)) or (Eq. (3.95)),
for the case being discussed here that starts with the same steady-state solution
(E[wc], E[ws]), it is possible to identify, in principle, more than one time-dependent
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Fig. 3.15 Traffic peak between two steady-state conditions

relationship relative to the mean waiting times <wc> and <ws> under a transient
condition, according to the deterministic formula on which the deductions are based.

In previous Sects. 3.2.2 and 3.2.3, we gave various relationships for wc and ws
in the case of a queue at the beginning and at the end of the peak period T, each
valid under specific assumptions about the number of vehicles on which we must
distribute the total waiting time Wc caused by the traffic peak Qe (only the vehicles
that arrived during T or all those affected by the traffic peak).

However, by most of the above-mentioned relationships, it is not easy (or
possible) to obtain closed-form relationships for <wc> and <ws>.
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Thus, among the time-dependent solutions obtainable, the most widely used
today is still the one developed by Kimber and Hollis [4] that we will now derive.

We operate in terms of increase in the waiting times with respect to the steady-
state conditions.

If the system instantly passes from a steady-state condition (characterized by a
traffic intensity value ρ0) to another condition (characterized by a traffic intensity
value ρ), the difference �E[wc] between the corresponding expected values of the
waiting times E[wc0] and E[wc], if the arrivals are Poissonian and the service times
are exponential (See Table 3.3) is

�E[wc] = 1

C
·
(

ρ

1 − ρ

)
− 1

C0
·
(

ρ0

1 − ρ0

)
(3.126)

The deterministic increase �wc of the average waiting time in the queue with
respect to E[wc], caused by the temporary oversaturation of the entry during T, may
be evaluated. This is done by starting with Eq. (3.86) and subtracting from the area
w∗∗

c = S(abcdefa), which gives the total waiting time in the queue (see Fig. 3.15),
the area S(abgdefa), which has the same value of the cumulative probabilistic
waiting time. Thus, we have, with B from Eq. (3.56):

�wc = 1/2 · (A∗∗ + B) − Lc0(T + T′
d)

Qe · T
= 1/2 · (A∗∗ + B) − Lc0(T + T′

d)

ρ · C · T
(3.127)

where A∗∗ must be evaluated by substituting L2
c1 = L2

c0 into Eq. (3.68).
In terms of traffic intensity ρ and capacity C before, during, and after the peak,

Eq. (3.127), by means of simple transformations, becomes

�wc = 1

2
·
(

ρ − 1

ρ

)
·
[

(1 − ρ0) · C0 + (ρ − 1) · C

(1 − ρ0) · C0

]
· T (3.128)

To obtain the transition curve �<wc> from �E[wc] to �wc, we use Eq. (3.92)
or Eq. (3.95).

ρe = ρT − (ρd − 1) (3.95)

Even in this case (See Fig. 3.12), we indicate the generic values of traffic intensity
with ρe, ρT, and ρd, with the following results

�E[wc] = �wc = � <wc> (3.129)

Now, to make ρd from Eq. (3.128) explicit after it has been substituted for ρ, we
use transformations of variables to simplify the calculation

(1 − ρ0) · C0 = C − y · ρ (3.130)
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Thus, using Eqs. (3.130) and (3.129), we obtain

ρd = C · (2 · �wc/T) + C − y

y · (2 · �wc/T) + C − y
(3.131)

that is, since, by Eq. (3.129), in correspondence of ρd, �wc= �<wc>

ρd = C · (2 · �<wc>/T) + C − y

y · (2 · �<wc>/T) + C − y
(3.132)

With this last expression of ρd inserted into Eq. (3.95) we have

ρe = ρT −
(

C · (2 · �<wc>/T) + C − y

y · (2 · �<wc>/T) + C − y
− 1

)
(3.133)

Now, we specify Eq. (3.126) with ρ = ρe, taking into account Eq. (3.129)

�<wc> = 1

C
·
(

ρe

1 − ρe

)
− 1

C0
·
(

ρ0

1 − ρ0

)
(3.134)

If we express ρe in Eq. (3.134) using its mathematical relationship from Eq.
(3.133), we finally have the implicit equation of the transition curve �<wc>

between �E[wc] and �wc.

� <wc> + 1

C0
·
(

ρ0

1 − ρ0

)
−

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
C ·

[

ρ − �<wc>[(
y

C−y

)
·�<wc>+ T

2

]

]

1 − ρ + �<wc>[(
y

C−y

)
·�<wc>+ T

2

]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= 0 (3.135)

Equation (3.135), solved with respect to �<wc> with reference to only the first
quadrant of the plane (ρ; increases of �(·)), since ρT is a current value of traffic
intensity (ρT = ρ), leads to

�<wc> = 1

2

(√
A2 + B − A

)
(3.136)

with

A = 1/2 · (1 − ρ) · (C − y) · T + 1/C · [C − y · (1 + ρ)]

C − y · ρ
+ 1

C0
·
(

ρ0

1 − ρ0

)

(3.137)

B =
2 · T ·

[
1
C · ρ − (1 − ρ) · 1

C0
· ρ0

(1−ρ0)

]
· (C − y)

C − y · ρ
(3.138)



102 3 Waiting Phenomena at Steady State and Non-steady State Conditions

Finally, the average waiting time in the queue <wc> is obtained by adding the
mean waiting time E[wc] at statistical equilibrium to the increase �<wc>

<wc> = �<wc> + 1

C0
·
(

ρ0

1 − ρ0

)
(3.139)

From Eqs. (3.139) and (3.4), we obtain the average time spent in the system

<ws> = �<wc> + 1

C0
·
(

ρ0

1 − ρ0

)
+ Ts (3.140)

Equation (3.139), deduced according to Kimber and Hollis, is generally regarded
as the conventional average waiting time in the queue (See Sect. 3.2.3).

It was obtained starting with a total incremental delay9 represented by the numer-
ator of Eq. (3.127) that, although relative to all the vehicles affected by the traffic
peak (vehicles that arrived during the peak period T and the following period T′

d,
which is still affected by the peak effects), was distributed only over the vehicles
that arrived during the peak interval (the denominator of Eq. (3.127)).

In other words, the peak vehicles that <wc> (Eq. (3.139)) refers to, are given a
average waiting time in the queue greater than the one that really pertains to them. In
fact, the total waiting time (Eq. (3.127)) includes the waits caused but not endured
by peak vehicles. The waiting times that are not endured by the peak vehicles are
instead endured by the vehicles arrived during T′

d, which are still affected by the
effects of peak demand.

It follows that, for the mean Ts of the service time to insert into Eq. (3.140) to
obtain from <wc>, the mean <ws> of the times spent in the system should be use
the weighted mean of the service times 1/C and 1/C1 = 1/C0 on the respective times
of application. (See illustrations in previous Sects. 3.2.1 and 3.2.2 concerning the
calculation of Ts.)

A simpler way would be to use only the mean value Ts = 1/C relative to the
peak period T [8].

Besides, we may rewrite A (Eq. (3.137)) and B (Eq. (3.138)) in terms of demand
(Qe and Qe0 = Qe1) and capacity (C and C0 = C1). Since ρ = Qe/C and ρ0 = ρ1
= Qe0/C0, y (Eq. (3.130)) is equal to y = [C–(1–Qe0/C0)·C0]/(Qe/C). From the Eq.
(3.135), we obtain (flows and capacity veh/h; T in h):

<wc> =
[

1

2
·
(√

F2 + G − F
)

+ E

]
· 3600 (s) (3.141)

<ws> =
[

1

2
·
(√

F2 + G − F
)

+ E + 1

C

]
· 3600 (s) (3.142)

9 with respect to the cumulative delay derived from the steady-state condition characterized by
ρ0 <1.
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with

F = 1

C0 − Qe0
·
[

T

2
· (C − Qe) · z + α ·

(
z − h

C

)]
+ E (3.143)

G = 2 · T · z

C0 − Qe0
·
[
α · Qe

C
− (C − Qe) · E

]
(3.144)

E = α · Qe0

C0 · (C0 − Qe0)
(3.145)

h = C − C0 + Qe0 (3.146)

z = 1 − h

Qe
(3.147)

The parameter α was introduced by Kimber and Hollis in addition to the variables
of the starting formula (Eq. (3.136)). It was added after the validation (and thus
setting) of Eq. (3.136) in order to make a comparison with the results obtained by a
different calculation criterion for waiting phenomena under a transient condition.

The parameter α was introduced to take into account peak periods T of very short
duration (e.g., T = 2–3 min) and the suggested value for α is 2.

With α = 2, however, one obtains unrealistic results for values of peak periods
that occur more frequently (e.g., with durations in the range of 10–15 min), so, under
these circumstances, one must use α =1.

Regarding the calculation of the percentiles Ls,p of the number of users in the
system Ls during the traffic peak, it implies the determination of the distribution
functions FLs(·) of Ls under a transient state.

Also, for FLs(·) as was just illustrated for <wc> and <ws>, we can heuristically
use the transformation of coordinates technique (Eq. (3.95)), because it is difficult to
use the exact results of the mathematical queuing theory under a transient condition.

With the above-mentioned criterion applied to the transition, Wu [9] obtained
FLs(·) and thus the expression of the percentiles Ls,p of the number of users in the
system during the traffic peak. To do so, Wu used the formulation of the distribution
function FLs(·) at a statistical equilibrium of Ls to the deterministic law of the same
parameter as a function of traffic intensity ρ.

The deductive procedure of FLs(·) and, thus, of the percentiles Ls,p, is shown in a
detailed and clear way in [10]. We refer to it for the development of the calculations
that lead to the following relationship

Ls,p = C · T

4

[

ρ − 1 +
√

(1 − ρ)2 + 8ρ

C · T

[− ln γ
]
]

(3.148)

where

γ =
(

1 − p

100

)
(3.149)
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Thus, for example, the estimation of the 95th percentile of Ls (with γ = 0.05) is

Ls,95 = C · T

4

[

ρ − 1 +
√

(1 − ρ)2 + 8ρ

C · T
· 3

]

(3.150)

while, with γ = 0.01, the 99th percentile of Ls is obtained from the relationship

Ls,99 = C · T

4

[

ρ − 1 +
√

(1 − ρ)2 + 8ρ

C · T
· 4,6

]

(3.151)

However, in steady-state conditions, as a first approximation, the double of the
average value of Ls,p generally represents an acceptable estimation for the applica-
tion of a percentile p sufficiently high (p = 90–95) of the number of users in the
system, i.e. Ls,p∼= 2 E[Ls].

In the next chapter, we will illustrate some detailed practical applications of the
time-dependent solutions presented in this section.

3.3.5 Concluding Remarks

Except for Eq. (3.122), the time-dependent relationships described in the previous
sections were obtained by assuming that statistical equilibrium solutions, which
then allow us to reach deterministic solutions, are relative to Poissonian arrivals and
exponential service times. Also, in the case illustrated in Sect. 3.3.4, the assumption
was made that statistical equilibrium conditions before and after the peak period are
the same (Qe0 = Qe1; C0 = C1).

The plausibility of these assumptions is proved by theoretical research and by the
good results in technical practice.

More general relationships than the ones deduced starting with the formulation
just recalled of Poissonian arrivals and exponential service times (for example,
Eq. (3.122)) are described in [4], and the reader should refer to this reference for
additional information.

However, regardless of the levels of generalization used, the results obtained
by the time-dependent formulas, given their heuristic nature, do not completely
agree with the exact results obtained through the mathematical queuing theory in
the absence of statistical equilibrium.

However, the discrepancies for the practical applications of interest are
negligible.

As we have often stressed in this chapter, time-dependent relationships (See
Fig. 3.12) are continuous functions of traffic intensity ρ. This ρ can vary inside
its entire domain interval (ρ∈[0;+∞[).

This allows us to obtain solutions in the neighborhood of ρ = 1 (where both
probabilistic and deterministic approaches give unrealistic results) and to treat the
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case of a traffic peak that is characterized by entry undersaturation during the peak
period.

In other words, it is possible to examine demand situations that can be defined as
peak situations, since the value of Qe in T is greater than Qe0 and Qe1, which pertain
to the intervals before and after T (Qe > Qe0; Qe > Qe1), respectively, but such that
the entry remains constantly undersaturated (Qe < C, i.e ρ < 1) for each t.

This type of circumstance will be examined in detail through some worked
examples in the next chapter.

Finally, it is worth noting that the approximate solutions for studying the transient
states of waiting phenomena at intersections are being thoroughly investigated [10].
This proves that this topic is considered to be essential in the field of functional
design of intersections.
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Chapter 4
Calculation of Waiting Times, Queue Lengths,
and Levels of Service

With the formulas described in the previous chapter, it is possible to evaluate the
waiting times and the number of vehicles in the queue and in the system. This can be
done by following the time evolution of traffic demand at legs and by the calculation
procedure of capacity given in Chap. 2.

According to the level of description of demand variation in time, different
computational procedures are used.

If demand Qe is considered for successive limited1 period of Tk (generally hav-
ing the same �t value) and is approximated by a continuous function (See Fig. 4.1),
the state variables may be performed following step by step the system evolution
(See Sect. 4.2). If Qe values are relative to greater2 time periods (or by adding deter-
minations relative to successive periods, See Fig. 4.2), the state variables can be
obtained by the procedure of Sect. 3.3.4.

The choice among the above-mentioned options depends on various considera-
tions, among which are the availability of more or less detailed measurements (or
estimations) of Qe and the aims of the analysis.

In the remaining part of this chapter, we will illustrate some important practical
applications of the results described in Chap. 3 to roundabouts, starting with the
case of a system evolution in which the entries are systematically undersaturated.

4.1 State Evolutions with Undersaturated Entries

First, let us consider the case of system evolution among conditions that can be
considered as steady-state.

We recall that, for technical aims, a steady-state condition is reached for under-
saturated entries, if the traffic demand at the intersection is constant for a finite time
period T, which is long enough to allow the stabilization of the operating conditions

1 In current technical practice, the values of these intervals are generally in the range of 5−15 min.
2 In current technical practice, the values of these intervals are generally in the range of 30 min to
an hour.

107R. Mauro, Calculation of Roundabouts, DOI 10.1007/978-3-642-04551-6_4,
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Fig. 4.1 Time evolution of traffic demand, capacity, and traffic intensity at an entry approximated
by continuous functions

of the roundabout in the neighborhood of constant mean values of the state variables.
In addition, the punctual values of state variables must be little dispersed around the
mean values E [·].

The transition from one to another of these statistical equilibrium conditions is
assumed as instantaneous.

In this connection, it is possible to demonstrate [1] that an approximated mea-
surement of the time ϑi, which the system must pass, at a generic entry “i”, from a
steady condition, characterized by a traffic intensity ρi0, to another steady condition
characterized by ρi1, is given by (footnote no. 4 in Sect. 1.1)
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Fig. 4.2 Time evolution of traffic demand, capacity, and traffic intensity at an entry approximated
by step functions

ϑi = 1

(
√

Ci − √
Qi)2

= 1

Ci · (1 − √
ρi1)2

(ρi1 ≤ 1) (4.1)

If ρi1<<1, the value of ϑi is small, and the new statistical equilibrium condi-
tion is reached rapidly (for practical purposes, instantaneously). If ρi1 tends to 1,
ϑi becomes large, and, in this case, transient state conditions must be taken into
account during ϑi.

In other words, if demand (and/or capacity) varies with respect to the previous
state for a period Ti, it is possible to neglect the time-dependent aspects of the
waiting phenomenon if
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ρi1 < ρic (4.2)

with

ρic =
(

1 − 1√
Ci · Ti

)2

(4.3)

If, instead, ρi1 > ρic, in the analysis of the system, the results of the statistical
equilibrium are not usable, but time-dependent formulas are used.

When the roundabout evolves through conditions that can be considered as
steady-state conditions, the determinations of the state variables as a function of
capacity Ci and of traffic intensity ρi = Qei/Ci are performed with the formulas
shown in Table 3.3 for Poissonian arrivals and exponential service times.

It is worth noting that the entering demand flows must be increased by the number
of vehicles waiting at the end of the previous time segment Tk−1 for the calcula-
tion of capacity by assuming that capacity is constant at intervals in the various
successive intervals Tk of subdivision of T.

In other words, if the interval Tk demand at the generic leg “i” is equal to Q(k)
ei

and several vehicles L(k−1)
si are already at the entry, the flow entering the circulatory

roadway during Tk, Q(k)
ei

∗, with Q(k)
ei and Q(k)

ei
∗ expressed in pcu/h, is equal to

Q(k)*
ei =

(
Q(k)

ei · Tk

60
+ L(k−1)

si

)
· 60

Tk
= Q(k)

ei + L(k−1)
si · 60

Tk
(4.4)

where the number of users in the system L(k−1)
si is 3

L(k−1)
si = E[Lsi]

(k−1) at steady-state conditions (4.5)

L(k−1)
si = < Lsi > (k−1) at transient conditions (4.6)

If we record zero values of traffic demand at a generic entry “i” in Tk, with Eq.
(4.4) it is possible to take into account a flow entering the circulatory roadway that
consists of L(k−1)

si vehicles in the system that queued up during the interval Tk–1.
From Eq. (4.4), it is straightforward to deduce that, if the interval Tk is suffi-

ciently long, the contribution of the waiting vehicles L(k−1)
si to the entering flow is

negligible, and it becomes null when T is infinite.
Now, it is worth noting that, for calculation aims, in all the relations relative to

the waiting phenomenon described in Chap. 3, traffic demand and capacity must be
expressed in vehicles (veh) per time, generally veh/h or veh/s.

3 We recall that, with E[·], we indicate the expected value and with < · >, we indicate the time-
dependent mean (Sect. 3.3).
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In the capacity formulas (See Chap. 2), demand and capacity are measured in
passenger car units (pcu) per time, i.e., generally as pcu/h or pcu/s.

Therefore, the values of traffic demand and the values obtained by capacity cal-
culations must be converted from one type of measurement to the other in order to
be used to determine waiting times, queue length, and the number of vehicles in the
system.

Capacity and traffic demand values Qe and C (in veh/time units) are obtained by
multiplying the determinations of Qe

′ and C′ by the self-evident factor f if Qe
′ and

C′ are given in pcu/time units

f = 1

(1 − Pp − Pcm) + αp · Pp + αcm · Pcm
(4.7)

where Pp and Pcm are the rates of heavy vehicles (coaches included) and bicycles
and motorbikes, respectively, present in the flow Qe. The symbols αp and αcm are
used to indicate the coefficients of equivalence of the above-mentioned vehicles in
passenger cars (in general, see Sect. 2.1, αp = 2 and αcm = 0.5).

On the other hand, the determination of L(·)
si that is expressed in vehicle units

(veh), in order to be added in Eq. (4.4) to the quantity Q(·)
ei · T·/60 (where Q(·)

ei is in
pcu/h) must be converted, using the factor f provided by Eq. (4.7), into passenger
car units (pcu).

To calculate traffic intensity ρ, we use one or the other vehicular volume measure,
thus obtaining the same numerical result.

To better explain the above-mentioned points, we will give some calculation
examples in the following sections.

4.1.1 First Worked Example

Consider a four-legged roundabout with a single-lane circulatory roadway and
single-lane entries.

Traffic demand (given in the form shown in Sect. 1.1.1) evolves instantaneously
through three stages.

To simplify the procedure, we assume that the percentages of vehicles different
from passenger cars are completely negligible, so that the values of demand and
capacity expressed in pcu/h coincide with those expressed in veh/h.
State 0 (from t = 0 to t = t1)

[Q(0)
ei ] = [

680 600 731 550
]

P(0)
O/D ≡

⎡

⎢⎢
⎣

0 0.40 0.40 0.20
0.35 0 0.50 0.15
0.15 0.30 0 0.55
0.40 0.40 0.20 0

⎤

⎥⎥
⎦ (4.8)
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M(0)
O/D ≡

⎡

⎢⎢
⎣

0 272 272 136
210 0 300 90
110 219 0 402
220 220 110 0

⎤

⎥⎥
⎦ (4.9)

State 1 (from t = t1 to t = t2 for a duration T1 = 20 min)

[Q(1)
ei ] = [

350 280 404 309
]

P(1)
O/D ≡

⎡

⎢⎢
⎣

0 0.25 0.36 0.39
0.29 0 0.37 0.34
0.33 0.29 0 0.38
0.31 0.35 0.34 0

⎤

⎥⎥
⎦ (4.10)

M(1)
O/D ≡

⎡

⎢⎢
⎣

0 88 126 136
81 0 104 95
132 116 0 156
96 108 105 0

⎤

⎥⎥
⎦ (4.11)

State 2 (from t = t2 for a duration T2 = 30 min)

[Q(2)
ei ] = [

455 460 433 420
]

P(2)
O/D ≡

⎡

⎢⎢
⎣

0 0,35 0,35 0,30
0,30 0 0,35 0,35
0,15 0,30 0 0,55
0,20 0,40 0,40 0

⎤

⎥⎥
⎦ (4.12)

M(2)
O/D ≡

⎡

⎢⎢
⎣

0 159 159 137
138 0 161 161
65 130 0 238
84 168 168 0

⎤

⎥⎥
⎦ (4.13)

To calculate capacity, we use the German formula by Brilon-Wu (Eq. 2.12).
State 0

By applying Eq. (1.12) from Chap. 1 to the elements of matrix (4.9), we obtain
the circulating flows [Q(0)

ci ]

[Q(0)
ci ] = [ Q(0)

c1 Q(0)
c2 Q(0)

c3 Q(0)
c4 ] = [ 549 518 436 539 ] (pcu/h) (4.14)

and, similarly, the capacities are obtained by applying Eq. (2.12) of Chap. 2

[C(0)
i ] = [ C(0)

1 C(0)
2 C(0)

3 C(0)
4 ] = [ 776 800 866 784 ] (pcu/h) (4.15)

For the traffic intensities (degrees of saturation) ρi
(0) = Qei

(0)/Ci
(0), we have

[ρ(0)
i ] = [ρ(0)

1 ρ
(0)
2 ρ

(0)
3 ρ

(0)
4 ] = [ 0.88 0.75 0.84 0.70 ] (4.16)

For each entry lane, the capacities and traffic intensities are known, so, using the
relationships shown in Table 3.3 of Chap. 3, we calculate the averages of the times
spent in the system E[wsi](0) and the number of the vehicles in the system E[Lsi](0)



4.1 State Evolutions with Undersaturated Entries 113

[E[wsi](0)] = [E[ws1](0) E[ws2](0) E[ws3](0) E[ws4](0) ] =
= [ 38.66 17.99 25.98 15.31 ] (s) (4.17)

[E[Lsi]
(0)] = [E[Ls1](0) E[Ls2](0) E[Ls3](0) E[Ls4](0) ] =

= [ 7.33 3.00 5.25 2.33 ] (veh)
(4.18)

For the vector of the percentiles, we have [Lsi,p](0) ∼= 2 [E[Lsi](0)], (p = 90–95,
see the end of Sect. 3.3.4) and, therefore

[Lsi,p](0) = [ 14.66 6.00 10.50 4.66 ] (veh) (4.19)

State 1
To calculate the circulating flows [Q(1)

ci ], we take into account the number of vehi-
cles [E[Lsi](0)] waiting at legs calculated for the previous condition (vector (4.18))
that enter the circulatory roadway during the interval T1 = 20 min and are therefore
added to those that form demand flow [Q(1)

ei ].

In conclusion, [Q(1)
ei ] (Eq. (4.10)) and [E[Lsi](0)] (Eq. (4.18)) yield (Eq. (4.4)) the

volumes (expressed in pcu/h)4

Q(1)
e1

∗ = 350 + 7.33 · 60
20 = 372

Q(1)
e2

∗ = 280 + 3.00 · 60
20 = 289

Q(1)
e3

∗ = 404 + 5.25 · 60
20 = 420

Q(1)
e4

∗ = 309 + 2.33 · 60
20 = 316

(4.20)

that is

[Q(1)
ei

∗] = [
372 289 420 316

]
(pcu/h) (4.21)

With the elements of vector (4.21) and matrix (4.10), Eq. (1.12) of Chap. 1 yields
the following circle flows

[Q(1)
ci

∗] = [
340 386 327 344

]
(pcu/h) (4.22)

With these values, we have the determinations of entry capacities during T1 =
20 min from Eq. (2.12) of Chap. 2

4 In this case, we recall that traffic demand consists of only passenger cars, and, therefore, it is not
necessary to convert the number of waiting vehicles into passenger car units.
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[C(1)
i ] = [

945 909 956 942
]

(pcu/h) (4.23)

With vectors (4.10) and (4.23), we calculate the traffic intensity vector ρi
(1) =

Qei
(1)/Ci

(1)

[ρ(1)
i ] = [ρ(1)

1 ρ
(1)
2 ρ

(1)
3 ρ

(1)
4 ] = [ 0.37 0.31 0.42 0.33 ] (4.24)

From Eq. (4.1), we obtain the values of each time interval ϑi
(1) using the

capacities and traffic intensities described in Eqs. (4.23) and (4.24), respectively.

ϑ
(1)
1 = 1

C(1)
1 ·(1−

√
ρ

(1)
1 )2

= 1
(945/3600)·(1−√

0.37)2 = 24.8 s

ϑ
(1)
2 = 1

C(1)
2 ·(1−

√
ρ

(1)
2 )2

= 1
(907/3600)·(1−√

0.31)2 = 20.2 s

ϑ
(1)
3 = 1

C(1)
3 ·(1−

√
ρ

(1)
3 )2

= 1
(956/3600)·(1−√

0.42)2 = 30.4 s

ϑ
(1)
4 = 1

C(1)
4 ·(1−

√
ρ

(1)
4 )2

= 1
(942/3600)·(1−√

0.33)2 = 21.1 s

(4.25)

All the values of ϑ
(1)
i obtained are much smaller than the observation interval T1

= 20 min = 1200 s.
The assumption of instantaneous transition from stage 0 to stage 1 that we made

at the beginning of this worked example is, therefore, plausible.
In other words, the interval T1 = 20 min is sufficiently wide to allow the

roundabout to rapidly reach steady-state conditions and preserve them in stage 1.
The averages of the times spent in the system (in s) E[wsi](1) and the number

of vehicles in the system E[Lsi](1) are obtained by using the relationships shown
in Table 3.3 of Chap. 3 (Poissonian arrivals and exponential service times) and the
values of Ci and ρi described in Eqs. (4.23) and (4.24), respectively:

[E[wsi]
(1)] = [E[ws1](1) E[ws2](1) E[ws3](1) E[ws4](1) ] =

= [ 6.05 5.75 6.50 5.71 ] (s) (4.26)

[E[Lsi]
(1)] = [E[Ls1](1) E[Ls2](1) E[Ls3](1) E[Ls4](1) ] =

= [ 0.59 0.45 0.72 0.49 ] (veh)
(4.27)

For the percentiles, with p = 90 – 95, we have [Lsi,p](1) ∼= 2 [E[Lsi](1)] and,
therefore, it is

[Lsi,p](1) = [ 1.18 0.90 1.44 0.98 ] (veh) (4.28)
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State 2
To calculate the circulating flows [Q(2)

ei ] to be introduced in the capacity formula,
we must now take into account the number of vehicles [E[Lsi](1)] in the system
(waiting at legs) determined for the previous condition (vector (4.27)) that enter
the circulatory roadway during the interval T2 = 30 min, and these vehicles must,
therefore, be added to the vehicles that form the demand flow [Q(2)

ei ].

In conclusion, [Q(2)
ei ] (Eq. (4.12)) and [E[Lsi](1)] (Eq. (4.27)) yield (Eq. (4.4)) the

volumes (expressed in pcu/h)

Q(2)
e1

∗ = 455 + 0.59 · 60
30 = 456

Q(2)
e2

∗ = 460 + 0.45 · 60
30 = 461

Q(2)
e3

∗ = 433 + 0.72 · 60
30 = 434

Q(2)
e4

∗ = 420 + 0.49 · 60
30 = 421

(4.29)

that is

[Q(2)
ei

∗] = [
456 461 434 421

]
(pcu/h) (4.30)

[Q(2)
ei

∗] actually coincides with the vector [Q(2)
ei ] (vector (4.12)).

With the elements of vector (4.30) and matrix (4.12), Eq. (1.12) of Chap. 1 yields
the circle flows that follows

[Q(2)
ci

∗] = [
466 464 436 334

]
(pcu/h) (4.31)

With these values, we can calculate the entry capacity determinations during T2
= 30 min using Eq. (2.12) of Chap. 2.

[C(2)
i ] =

[
842 843 866 950

]
(pcu/h) (4.32)

The traffic intensity vector ρi
(2) = Qei

(2)/Ci
(2) is

[ρ(2)
i ] = [ρ(2)

1 ρ
(2)
2 ρ

(2)
3 ρ

(2)
4 ] = [ 0.54 0.55 0.50 0.44 ] (4.33)

With capacity (4.32) and traffic intensities (4.33), from Eq. (4.1), we have the
values for each time interval ϑ

(2)
i
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ϑ
(2)
1 = 1

C(2)
1 ·(1 -

√
ρ

(2)
1 )2

= 1
(842/3600)·(1 -

√
0.54)2 = 60.8 s

ϑ
(2)
2 = 1

C(2)
2 ·(1 -

√
ρ

(2)
2 )2

= 1
(843/3600)·(1 -

√
0.55)2 = 63.9 s

ϑ
(2)
3 = 1

C(2)
3 ·(1 -

√
ρ

(2)
3 )2

= 1
(866/3600)·(1 -

√
0.50)2 = 48.5 s

ϑ
(2)
4 = 1

C(2)
4 ·(1 -

√
ρ

(2)
4 )2

= 1
(950/3600)·(1 -

√
0.44)2 = 33.4 s

(4.34)

All the values of ϑi
(2) obtained are much smaller than the observation interval

T2 = 30 min = 1800 s.
The assumption of instantaneous transition from stage 2 to stage 3 that we made

at the beginning of this worked example is, therefore, plausible.
In other words, the interval T2 = 30 min is sufficiently wide to allow the

roundabout to rapidly reach steady-state conditions and preserve them in stage 2.
The averages of the times spent in the system (in s) E[wsi](2) and the number

of vehicles in the system E[Lsi](2) can be obtained from the relationships shown in
Table 3.3 of Chap. 3 using the values of capacity and traffic intensity described in
Eqs. (4.32) and (4.33), respectively

[E[wsi]
(2)] = [E[ws1](2) E[ws2](2) E[ws3](2) E[ws4](2) ] =

= [ 9.30 9.49 8.31 6.77 ] (s)
(4.35)

[E[Lsi]
(2)] = [E[Ls1](2) E[Ls2](2) E[Ls3](2) E[Ls4](2) ] =

= [ 1.17 1.22 1.00 0.79 ] (veh)
(4.36)

For the percentiles, with p = 90 – 95, we have [Lsi,p](2) ∼= 2 [E[Lsi](2)], and,
therefore, it is

[Lsi,p](2) = [ 2.34 2.44 2.00 1.58 ] (veh) (4.37)

4.1.2 Second Worked Example

Assume that the roundabout described in the previous example evolves again
through three states, with the first and the third associated with traffic demand
(pcu/h) given by
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[Q(0)
ei ] = [Q(2)

ei ] = [
590 540 500 530

]

P(0)
O/D ≡ P(2)

O/D ≡

⎡

⎢⎢
⎣

0 0.40 0.40 0.20
0.35 0 0.50 0.15
0.15 0.30 0 0.55
0.40 0.40 0.20 0

⎤

⎥⎥
⎦

M(0)
O/D ≡ M(2)

O/D ≡

⎡

⎢⎢
⎣

0 272 272 136
210 0 300 90
110 219 0 402
220 220 110 0

⎤

⎥⎥
⎦

This demand is applied for a duration that can be considered, for practical aims,
infinite.

The second state, the duration of which is T1 = 10 min, is connected to the matrix
P(1)

O/D (4.10) and the vector [Q(1)
ei ]

[Q(1)
ei ] = [ 638 590 660 680 ] (pcu/h) (4.38)

that is to matrix M(1)
O/D

M(1)
O/D ≡

⎡

⎢⎢
⎣

0 159 230 249
171 0 218 201
218 191 0 251
211 238 231 0

⎤

⎥⎥
⎦ (pcu/h) (4.39)

Also in this example, to simplify the procedure, we assume that, in the flows
under examination, the percentages of vehicles different from passenger cars are
completely negligible, so that the values expressed in pcu/h and pcu coincide with
those expressed in veh/h and veh. Again, we use the capacity formula developed by
Brilon-Wu (See Sect. 2.1.5).
State 0

By the same calculation criteria used for the homologous condition of the worked
example described in Sect. 4.1.1, we have

[Q(0)
ci ] = [ 468 460 388 414 ] (puc/h)

[C(0)
i ] = [ 840 847 905 884 ] (puc/h)

[ρ(0)
i ] = [ 0.70 0.64 0.55 0.60 ]

[E[wsi](0)] = [ 14.28 11.81 8.84 10.18 ] (s)

[E[Lsi](0)] = [ 2.33 1.78 1.22 1.50 ] (veh)

[Lsi,p](0) = [ 4.66 3.56 2.44 3.00 ] (veh)
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State 1
To calculate the circulating flows [Q(1)

ei ], we take into account the number of
vehicles [E[Lsi](0)], determined for the previous condition, that enter the circulatory
roadway during the interval T1 = 10 min and that must, therefore, be added to the
vehicles that form the demand flow [Q(1)

ei ].

Finally, [Q(1)
ei ] (Eq. (4.38)) and [E[Lsi](0)] yield, on the basis of Eqs. (4.4) and

(4.5), the volumes (expressed in pcu/h)

Q(1)
e1

∗ =
(

638 · 10
60 + 2.33

)
· 60

10 = 652

Q(1)
e2

∗ =
(

590 · 10
60 + 1.78

)
· 60

10 = 601

Q(1)
e3

∗ =
(

660 · 10
60 + 1.22

)
· 60

10 = 667

Q(1)
e4

∗ =
(

680 · 10
60 + 1.50

)
· 60

10 = 689

(4.40)

that is

[Q(1)
ei

∗] = [
652 601 667 689

]
(pcu/h) (4.41)

With the elements of vector (4.41) and matrix P(1)
O/D (matrix 4.10), Eq. (1.12) of

Chap. 1 yields the circle flows that follow

[Q(1)
ei

∗] = [
669 723 633 589

]
(pcu/h) (4.42)

With these values, we can calculate entry capacities during T1 = 10 min from
Eq. (2.12) of Chap. 2.

[C(1)
i ] =

[
683 643 711 745

]
(pcu/h) (4.43)

With vectors (4.38) and (4.43) we calculate the traffic intensity vector ρi
(1) =

Qei
(1)/Ci

(1)

[ρ(1)
i ] = [ρ(1)

1 ρ
(1)
2 ρ

(1)
3 ρ

(1)
4 ] = [ 0.93 0.92 0.93 0.91 ] (4.44)

With the capacities and traffic intenities described in Eqs. (4.43) and (4.44),
respectively, from Eq. (4.1) we have the values for each time interval ϑi

(1)
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ϑ
(1)
1 = 1

C(1)
1 ·(1−

√
ρ

(1)
1 )2

= 1
(683/3600)·(1−√

0.93)2 = 4148s = 69.1 min

ϑ
(1)
2 = 1

C(1)
2 ·(1−

√
ρ

(1)
2 )2

= 1
(643/3600)·(1−√

0.92)2 = 3359s = 56.0 min

ϑ
(1)
3 = 1

C(1)
3 ·(1−

√
ρ

(1)
3 )2

= 1
(711/3600)·(1−√

0.93)2 = 3988s = 66.5 min

ϑ
(1)
4 = 1

C(1)
4 ·(1−

√
ρ

(1)
4 )2

= 1
(745/3600)·(1−√

0.91)2 = 2279s = 38.0 min

(4.45)

All the values of ϑ
(1)
i obtained are much greater than the observation interval T1

= 10 min = 600 s.
The assumption of instantaneous transition from stage 0 to stage 1 is, therefore,

not plausible.
In other words, the interval T1 = 10 min is not sufficiently wide to allow the

roundabout to reach steady-state conditions and preserve them in stage 1.
Therefore, the averages of the times spent and the number of vehicles in the

system cannot be obtained from the relationships that are valid for the steady-state
conditions. Instead, they must be calculated starting with Eq. (3.142) and with the
specifications of Eqs. (3.143)–(3.147), all of which are contained in Chap. 3 (flows
and capacities in pcu/h; time T in h).

<wsi> =
[

1

2
·
(√

F2
i + Gi − Fi

)
+ Ei + 1

C(1)
i

]

· 3600 (s) (4.46)

where the subscript “i” refers to the factors of the second member relative to the
generic entry “i:”

Fi = 1

C(0)
i − Q(0)

ei

·
[

T1

2
· (C(1)

i − Q(1)
ei ) · zi +

(

zi − hi

C(1)
i

)]

+ Ei (4.47)

Gi = 2 · T1 · zi

C(0)
i − Q(0)

ei

·
[

Q(1)
ei

C(1)
i

− (C(1)
i − Q(1)

ei ) · Ei

]

(4.48)

Ei = Q(0)
ei

C(0)
i · (C(0)

i − Q(0)
ei )

(4.49)

hi = C(1)
i − C(0)

i + Q(0)
ei (4.50)

zi = 1 − hi

Q(1)
ei

(4.51)

Substituting the values of traffic demand and capacity calculated before for state
0 and state 1 into Eqs. (4.47)–(4.51) for entry 1, we have
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h1 = C(1)
1 − C(0)

1 + Q(0)
e1 = 683 − 840 + 590 = 433

z1 = 1 − h1

Q(1)
e1

= 1 − 433

638
= 0.3213166

E1 = Q(0)
e1

C(0)
1 · (C(0)

1 − Q(0)
e1 )

= 590

840 · (840 − 590)
= 0.0028095

F1 = 1

C(0)
1 − Q(0)

e1

·
[

T1

2
· (C(1)

1 − Q(1)
e1 ) · z1 +

(

z1 − h1

C(1)
1

)]

+ E1 =

= 1

840 − 590
·
[

10

2
· (683 − 638) · 0.3213166 +

(
0.3213166 − 433

683

)]

+ 0.0028095 = 0.0063787

G1 = 2 · T1 · z1

C(0)
1 − Q(0)

e1

·
[

Q(1)
e1

C(1)
1

−(C(1)
1 − Q(1)

e1 ) · E1

]

=

= 2 · 10 · 0.3213166

840 − 590
·
[

638

683
− (683 − 638) · 0.0028095

]
= 0.0003460

and, therefore,

<ws1>
(1) =

[
1

2
·
(√

F2
1 + G1 − F1

)
+ E1 + 1

C(1)
1

]

· 3600 =

=
[

1

2
·
(√

(0.0063787)2+0.0003460−0.0063787
)
+0.0028095+ 1

683

]
·

3600 = 39.3 s

Repeating the calculation just performed for entry 1, for the remaining three
entries we have

<ws2>
(1) = 36.5 s

<ws3>
(1) = 34.3 s

<ws4>
(1) = 31.9 s

To determine the 95th percentile of Lsi we use Eq. (3.150) from Chap. 3, and,
thus, we have
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Ls1.95 = C(1)
1 · T

4
·
⎡

⎣ρ
(1)
1 − 1 +

√√√√(1 − ρ
(1)
1 )2 + 8 · ρ

(1)
1

C(1)
1 · T

· 3

⎤

⎦ =

= 683 · 0.167

4
·
[

0.93 − 1 +
√

(1 − 0.93)2 + 8 · 0.93

683 · 0.167
· 3

]

= 10.8 veh

Ls2.95 = 10.2 veh

Ls3,95 = 10.9 veh

Ls2,95 = 10.5 veh

Applying in any case, to stage 1, the relationship at steady-state conditions (See
Table 3.3 of Chap. 3,) we have the following values

[E[wsi](1)] = [ 75.3 70.0 72.4 53.7 ]
[Lsi,95](1) = [ 26.6 23.0 26.6 20.2 ] (veh)

by which we overestimate the determinations of the state variables under examina-
tion.
State 2

To calculate the circulating flows [Q(2)
ci ] to be introduced into the capacity for-

mula, we must take into account the number of vehicles < Lsi > (1) in the system
(waiting at legs) at the end of the previous period T1. However, since the value of
T2 is in this example assumed to be infinite, the entering flows [Q(2)

ei
∗] coincide with

the demand flows (Eq. (4.4)).
In addition, having assumed that traffic demand is equal to [Q(0)

ei ] = [Q(2)
ei ] and

M(0)
O/D = M(2)

O/D, it follows that, under this condition, the determinations of [E[wsi](2)]
and [E[Lsi](2)] coincide with those of state 0.

In the end, we have

[E[wsi](2)] = [ 14.28 11.81 8.84 10.18 ] (s)
[E[Lsi](2)] = [ 2.33 1.78 1.22 1.50 ] (veh)
[Lsi,95](2) = [ 4.66 3.56 2.44 3.00 ] (veh)

4.2 State Evolution with Saturated or Oversaturated Entries

In the case of evolution of the system between conditions with saturated or over-
saturated entries, we use time-dependent formulas since there are no steady-state
conditions. For each entry, the behavior of traffic demand with time is known
(assigned, for example, as in the form in Sect. 1.1).
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The beginning and the end of observation interval T are selected in correspon-
dence with the system under steady-state conditions. T is divided into subintervals
Tk, during which Qei(t) is constant (See Fig. 4.1).

The calculation of the state variables of the system is performed with the
following procedure:

– we select a capacity formula for the roundabout under examination;
– for the initial steady-state condition, we determine, with the criteria described in

Sect. 1.1, the circle flows, the exiting flows, and the disturbing volumes to be
introduced into the capacity formula selected in correspondence with each leg;

– we calculate the first capacity value for each entry “i”;
– then, for each entry, we use the relationships described in Sect. 3.1 to deter-

mine the average time spent [E[wsi](0)] and the number of vehicles in the system
[E[Lsi](0)] (and/or the waiting time in the queue and the queue length if we also
wish to use these state variables) at statistical equilibrium;

– at each successive calculation step k (with the respective interval Tk), we
determine for each entry:

• the demand value Q(k)∗
ei , on the basis of Eq. (4.4), as a function of the value

Q(k)
ei of traffic demand during Tk and of the number of vehicles in the system at

the end of the previous period Tk–1;
• with the Q(k)*

ei relative to each entry, the circle flows, the exiting flows, and the
conflicting flows to be introduced into the selected capacity formula;

• the capacities C(k)
i at each entry (in case of saturation or oversaturation of one

or more of the entries using the procedure illustrated in Sect. 2.5);
• the traffic intensities (degrees of saturation) ρ

(k)
i = Q(k)

ei /C(k)
i ;

• the number of users in the system <Lsi>
(k) at the end of the interval Tk

((Eq. (3.103) of Chap. 3) using, for each entry “i” during the interval Tk,
Eqs. (3.104) and (3.105) of Chap. 3 with:

ρ = ρ
(k)
i ; C = C(k)

i ; T = Tk; Ls0 = <Lsi>
(k−1)

thus, obtaining at step k

<Lsi>
(k) = 1

2

(√
(A(k)

i )2 + B(k)
i − A(k)

i

)
(4.52)

with

A(k)
i = (1 − ρ

(k)
i ) · C(k)

i · Tk + 1 − <Lsi>
(k−1)) (4.53)
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Bi = 4(<Lsi>
(k−1)+ρ

(k)
i · C(k)

i · Tk) (4.54)

We repeat that the value Ls0 of Eq. (3.104) of Chap. 3 evidently coincides with
the number of users in the system <Lsi>

(k - 1) at the end of interval Tk–1 previ-
ous to the one considered in the calculation (at the beginning of the calculation
procedure we have k = 1 and Ls0= E[Lsi](0));

• the average time spent in the system <wsi>
(k) during Tk, with Eq. (3.115) of

Chap. 3. Equation (3.115) of Chap. 3 is specified for each entry “i” putting into
Eqs. (3.116) and (3.117) of Chap. 3:

ρ = ρ
(k)
i ; C = C(k)

i ; T = Tk; Ls0 = <Lsi > (k−1)

thus, we obtain at step k:

< wsi>
(k) = 1

2

(√
(J(k)

i )2 + M(k)
i − J(k)

i

)
(4.55)

with

J(k)
i = Tk

2
· (1 − ρ

(k)
i ) -

1

C(k)
i

· (< Lsi>
(k−1) + 1) (4.56)

M(k)
i = 4

C(k)
i

·
[

Tk

2
· (1 − ρ

(k)
i ) + 1

2
· ρ

(k)
i · Tk

]
(4.57)

The procedure ends when the entire system observation interval has been
covered. Evidently, if we are interested in the determination of the queue
lengths and waiting times in the queue, we must also specify, with the same
positions used for Eqs. (3.103)–(3.105) and for Eqs. (3.115)–(3.117), Eqs.
(3.107)–(3.109), and Eqs. (3.119)–(3.121) of Chap. 3. So, we must use Eqs.
(3.107) and (3.119) from Chap. 3.

To better explain the points illustrated so far, we will now give two calculation
examples.

4.2.1 First Worked Example

At the beginning of the computational process, the roundabout that is assumed to
have four legs (i = 1, 2, 3, 4) is at steady-state conditions.
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Traffic demand has the following percentage composition: heavy vehicles
(coaches included) account for 6.5%, and bicycles and motorcycles account for 5%
of the total volume Qei.

This composition remains the same on all legs of the system during the entire
observation interval T.

For the transformation from pcu/h and pcu into veh/h and veh, respectively, the
coefficient f given by Eq. (4.7) is

f = 1

(1 − 0.065 − 0.05) + 2 · 0.065 + 0.5 · 0.05
= 0.962

where we have used the values αp = 2 and αcm = 0.5, respectively, for the
equivalence in passenger cars.

In addition, the matrix PO/D of the traffic percentages is also assumed to be invari-
ant during the entire T. The variability of demand in time is thus attributable only to
the behavior of flows Q(k)

ei during the sub-intervals Tk (See Fig. 4.3).
To give an example, we follow the evolution process relative to entry 2 (The

procedure can be repeated for the other entries).
From the calculation of disturbing flows Q(0)

di on the basis of traffic demand (Q(0)
ei ;

PO/D), with the selected capacity formula we have, for entry 2, the capacity value
C(0)

2 = 1055 pcu/h = 1055 · 0.962 = 1015 veh/h.

As Q(0)
ei = 895 pcu/h (See Fig. 4.3), for the traffic intensity ρ

(0)
2 = 895/ 1055 =

0.848 and, therefore, for the number of vehicles E[Ls2](0) and the time spent
E[ws2](0) in the system (See Table 3.3 of Chap. 3), assuming Poissonian arrivals
and exponential service times, we have:

E[ws2](0) = 1/[(1015/3600) · (1 − 0.848)] = 23.3 s
E[Ls2](0) = 0.848/(1 − 0.848) = 5.6 veh

Similarly, since we know Q(0)
ei and have determined C(0)

i for the other three
entries, we have the initial values [E[wsi](0)] and E[Lsi](0)].

Demand evolution is given for intervals of Tk = 10 min.
In step 1, we calculate (Eq. (4.4)), for each entry, the increase in demand caused

by the number of vehicles waiting in the system relative to the previous state; to
do so, the [E[Lsi](0)] must be converted from veh to pcu, once again by using the
coefficient f = 0.962.

Thus, for entry 2, since Q(1)
e2 = 1034 pcu/h = 1034 · 0.962 = 1000 veh/h and

E[Ls2](0) = 5.6/0.962 = 5.82 pcu/h, we have

Q(1)
e2

∗ = 1034 + 5.82 · 60

10
= 1069pcu/h

Since we know the demand [Q(1)
ei

∗] we determine, for each entry, the disturbing

flows and the capacity values [C(1)
i ] relative to calculation step 1, i.e., for interval T1.
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Fig. 4.3 Time evolution of
traffic demand, capacity,
traffic intensity, and state
variables for entry 2



126 4 Calculation of Waiting Times, Queue Lengths, and Levels of Service

For C(1)
2 , our calculation yields C(1)

2 = 998 pcu/h. The entry is oversaturated,
and, therefore, we used the computational procedure described in Sect. 2.5 for the
determination of capacity.

To determine <ws2 > (1) and <Ls2 > (1), we convert C(1)
2 from pcu/h to veh/h.

Thus, we have

C(1)
2 = 998 · 0.962 = 960 veh/h

and we evaluate traffic intensity during the period T1 that is equal to

ρ
(1)
2 = Q(1)

e2 /C(1)
2 = 1000/960 = 1.04

Putting these values into Eqs. (4.53) and (4.54), we have

A(1)
2 = (1 − ρ

(1)
2 ) · C(1)

2 · T1 + 1− < Ls2 > (0)

= (1 − 1.04) · 960/3600 · 600 + 1 − 5.6 = −11.00

B(1)
2 = 4 · ( < Ls2 >(0) +ρ

(1)
2 · C(1)

2 · T1)
= 4 · (5.6 + 1.04 · 960/3600 · 600) = 688.00

and, therefore, with Eq. (4.52), we have

<Ls2 > (1) = 1

2
·
(√

(A(1)
2 )2 + B(1)

2 − A(1)
2

)
=

= 1

2
·
(√

( − 11.00)2 + 688.00 + 11.00
)

= 19.7 veh

By specifying Eqs. (4.56) and (4.57), we have

J(1)
2 = T1

2 · (1 − ρ
(1)
2 ) − 1

C(1)
2

· ( < Ls2 > (0) + 1) =
= 600

2
· (1 − 1.04) − 1

960/3600
· (5.6 + 1) = −36.75

M(1)
2 = 4

C(1)
2

·
[

T1
2 · (1−ρ

(1)
2 ) + 1

2 · ρ
(1)
2 · T1

]
=

= 4
960/3600 ·

[
600

2 · (1 − 1.04) + 1
2 · 1.04 · 600

]
= 4500.00

and, therefore, from Eq. (4.55), we have

<w(1)
s2 > = 1

2 ·
(√

(J(1)
2 )2 + M(1)

2 − J(1)
2

)
=

= 1
2 ·
(√

( − 36.75)2 + 4500.00 + 36.75
)

= 56.6 s



4.2 State Evolution with Saturated or Oversaturated Entries 127

In step 2, we calculate (Eq. (4.4)), for each entry, the increase in demand caused
by the number of vehicles in the system relative to the previous state; to do so, the
<Lsi>

(1) must be converted from veh to pcu, once again using the coefficient f =
0.962.

Therefore, for entry 2, since Q(2)
e2 = 1060 pcu/h = 1000 · 0.962 = 1020 veh/h

and <Ls2>
(1) = 19.7/0.962 = 20.48 pcu/h, we have

Q(2)*
e2 = 1060 + 20.48 · 60

10
= 1183 pcu/h

Since we know the demand [Q(2)
ei

∗], we determine, for each entry, the disturbing

flows and then the capacity values [C(2)
i ] relative to calculation step 2, that is, for the

interval T2.
For C(2)

2 , our calculation yields C(2)
2 = 982 pcu/h (the entry is oversaturated, and,

thus, for the calculation of capacity, we used the computational procedure described
in Sect. 2.5).

To determine <ws2>
(2) and < Ls2 > (2), we convert C(2)

2 from pcu/h to veh/h.
Thus, we have

C(2)
2 = 982 · 0.962 = 945 veh/h

and we evaluate traffic intensity during period T2, which is equal to

ρ
(2)
2 = Q(2)

e2 /C(2)
2 = 1020/945 = 1.08

Putting these values into Eqs. (4.53) and (4.54), we have

A(2)
2 = (1 − ρ

(2)
2 ) · C(2)

2 · T2 + 1 − <Ls2 > (1) =
= (1 − 1.08) · 945/3600 · 600 + 1 − 19.7 = −31.30

B(2)
2 = 4 · (<Ls2>

(1) + ρ
(2)
2 · C(2)

2 · T2) =
= 4 · (19.7 + 1.08 · 945/3600 · 600) = 759.20

and, therefore, with Eq. (4.52), we have

<Ls2>
(2) = 1

2 ·
(√

(A(2)
2 )2 + B(2)

2 − A(2)
2

)
=

= 1
2 ·
(√

( − 31.30)2 + 759.20 + 31.30
)

= 36.5 veh
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By specifying Eqs. (4.56) and (4.57), we have

J(2)
2 = T2

2 · (1 − ρ
(2)
2 ) − 1

C(2)
2

· ( < Ls2 > (1) + 1) =
= 600

2 · (1 − 1.08) − 1
945/3600 · (19.7 + 1) = −102.86

M(2)
2 = 4

C(2)
2

·
[

T2
2 · (1 − ρ

(2)
2 ) + 1

2 · ρ
(2)
2 · T2

]
=

= 4
945/3600 ·

[
600

2 · (1 − 1.08) + 1
2 · 1.08 · 600

]
= 4571.43

and therefore, from Eq. (4.55), we have

<w(2)
s2 >= 1

2 ·
(√

(J(2)
2 )2 + M(2)

2 − J(2)
2

)
=

= 1
2 ·
(√

(−102.86)2 + 4571.43 + 102.86
)

= 113.0 s

In step 3, we calculate (Eq. (4.4)), for each entry, the increase in demand caused
by the number of vehicles in the system relative to the previous state; to do so, the
<Lsi > (2) must be converted from veh to pcu, once again using the coefficient f =
0.962.

Therefore, for entry 2, since Q(3)
e2 = 1019 pcu/h = 1019 � 0.962 = 980 veh/h and

<Ls2 > (2) = 36.5/0.962 = 37.94 pcu/h, we have

Q(3)*
e2 = 1019 + 37.94 · 60

10
= 1247 pcu/h

Since we know the demand [Q(3)
ei

∗], we determine, for each entry, the disturbing

flows and then the capacity values [C(3)
i ] relative to calculation step 3, that is, for the

interval T3.
For C(3)

2 our calculation yields C(3)
2 = 1040 pcu/h (other two entries are oversatu-

rated, and, thus, for the calculation of capacity, we used the computational procedure
described in Sect. 2.5).

To determine <ws2 > (3) and <Ls2 > (3), we convert C(3)
2 from pcu/h to veh/h.

Thus, we have

C(3)
2 = 1040 · 0.962 = 1000 veh/h

and we evaluate traffic intensity during the period T3 as:

ρ
(3)
2 = Q(3)

e2 /C(3)
2 = 980/1000 = 0.98

Putting these values into Eqs. (4.53) and (4.54), we have

A(3)
2 = (1 − ρ

(3)
2 ) · C(3)

2 · T3 + 1 − <Ls2 >(2)=
= (1 − 0.98) · 1000/3600 · 600 + 1 − 36.5 = −32.17

B(3)
2 = 4 · (<Ls2>

(2) + ρ
(3)
2 · C(3)

2 · T3) =
= 4 · (36.5 + 0.98 · 1000/3600 · 600) = 799.33
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and, therefore, with Eq. (4.52), we have

<Ls2 > (3) = 1
2 ·
(√

(A(3)
2 )2 + B(3)

2 −A(3)
2

)
=

= 1
2 ·
(√

( − 32.17)2 + 799.33 + 32.17
)

= 37.5 veh

By specifying Eqs. (4.56) and (4.57), we have

J(3)
2 = T3

2 · (1 − ρ
(3)
2 ) − 1

C(3)
2

· (<Ls2 > (2) + 1) =
= 600

2 · (1 − 0.98) − 1
1000/3600 · (36.5 + 1) = −129.00

M(3)
2 = 4

C(3)
2

·
[

T3
2 · (1−ρ

(3)
2 ) + 1

2 · ρ
(3)
2 · T3

]
=

= 4
1000/3600 ·

[
600

2 · (1 − 0.98) + 1
2 · 0.98 · 600

]
= 4320.00

and, therefore, from Eq. (4.55), we have

<w(3)
s2 >= 1

2 ·
(√

(J(3)
2 )2 + M(3)

2 − J(3)
2

)
=

= 1
2 ·
(√

(−129.00)2 + 4320.00 + 129.00
)

= 136.9 s

In step 4, we calculate (Eq. (4.4)), for each entry, the increase in demand caused
by the number of vehicles in the system relative to the previous state; to do so, the
<Lsi > (3) must be converted from veh to pcu, once again using the coefficient f =
0.962.

Thus, for entry 2, since Q(4)
e2 = 988 pcu/h = 988 · 0.962 = 950 veh/h and

<Ls2 > (3) = 37.5/0.962 = 38.98 pcu/h, we have

Q(4)∗
e2 = 988 + 38.98 · 60

10
= 1222 pcu/h

Since we know the demand [Q(4)
ei

∗], we determine, for each entry, the disturbing

flows and then the capacity values [C(4)
i ] relative to calculation step 4, that is, for the

interval T4.
For C(4)

2 , our calculation yields C(4)
2 = 1,227 pcu/h (other two entries are over-

saturated, and, thus, for the calculation of capacity, we used the computational
procedure described in Sect. 2.5.)

To determine <ws2>
(4) and <Ls2>

(4), we convert C(4)
2 from pcu/h to veh/h.

Thus, we have

C(4)
2 = 1227 · 0.962 = 1180 veh/h
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and we evaluate traffic intensity during the period T4 as:

ρ
(4)
2 = Q(4)

e2 /C(4)
2 = 950/1180 = 0.81

Putting these values into Eqs. (4.53) and (4.54), we have

A(4)
2 = (1 − ρ

(4)
2 ) · C(4)

2 · T4 + 1− < Ls2 >(3)=
= (1 − 0.81) · 1180/3600 · 600 + 1 − 37.5 = 0.87

B(4)
2

=4 · (<Ls2 >(3) +ρ
(4)
2 · C(4)

2 · T4) =
4 · (37.5+ 0.81 · 1180/3600 · 600)=787.20

and, therefore, with Eq. (4.52), we have

<Ls2 > (4) = 1
2 ·
(√

(A(4)
2 )2 + B(4)

2 − A(4)
2

)
=

= 1
2 ·
(√

(0.87)2 + 787.20 − 0.87
)

= 13.6 veh

By specifying Eqs. (4.56) and (4.57), we have

J(4)
2 = T4

2 · (1 − ρ
(4)
2 ) − 1

C(4)
2

· ( < Ls2 > (3) + 1) =

= 600
2 · (1 − 0.81) − 1

1180/3600 · (37.5 + 1) = −60.46

M(4)
2 = 4

C(4)
2

·
[

T4
2 · (1 − ρ

(4)
2 ) + 1

2 · ρ
(4)
2 · T4

]
=

= 4
1180/3600 ·

[
600

2 · (1 - 0.81) + 1
2 · 0.81 · 600

]
= 3361.02

and, therefore, from Eq. (4.55), we have

<w(4)
s2 > = 1

2 ·
(√

(J(4)
2 )2 + M(4)

2 − J(4)
2

)
=

= 1
2 ·
(√

(-60.46)2 + 3361.02 + 60.46
)

= 73.0 s

In step 5, we calculate (Eq. (4.4)), for each entry, the increase in demand caused
by the number of vehicles in the system relative to the previous state; to do so, the
< Lsi > (4) must be converted from veh to pcu, once again using the coefficient f =
0.962.

Thus, for entry 2, since Q(5)
e2 = 956 pcu/h = 988 · 0.962 = 920 veh/h and

<Ls2 > (4) = 13.6/0.962 = 14.14 pcu/h, we have

Q(5)*
e2 = 956 + 14.14 · 60

10
= 1041 pcu/h

Since we know the demand [Q(5)
ei

∗], we determine, for each entry, the conflicting

flows and then the capacity values [C(5)
i ] relative to calculation step 5, that is, for

the interval T5.
For C(5)

2 our calculation yields C(5)
2 = 1247 pcu/h (other three entries are over-

saturated, and, thus, for the calculation of capacity, we used the computational
procedure described in Sect. 2.5).
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To determine < ws2 > (5) and < Ls2 > (5), we must convert C(5)
2 from pcu/h to

veh/h. Thus we have

C(5)
2 = 1247 · 0.962 = 1200 veh/h

and we evaluate traffic intensity during the period T4 as:

ρ
(5)
2 = Q(5)

e2 /C(5)
2 = 920/1200 = 0.77

Putting these values into Eqs. (4.53) and (4.54), we have

A(5)
2 = (1 − ρ

(5)
2 ) · C(5)

2 · T5 + 1 − <Ls2 > (4) =
= (1 − 0.77) · 1200/3600 · 600 + 1 − 13.6 = 33.40

B(5)
2

= 4 · (<Ls2 > (4) + ρ
(5)
2 · C(5)

2 · T5) =
4 · (13.6 + 0.77 · 1200/3600 · 600) = 670.40

and, therefore, with Eq. (4.52), we have

< Ls2>(5) = 1
2 ·
(√

(A(5)
2 )2 + B(5)

2 −A(5)
2

)
=

= 1
2 ·
(√

(33.40)2 + 670.40 − 33.40
)

= 4.4 veh

By specifying Eqs. (4.56) and (4.57), we have

J(5)
2 = T5

2 · (1 − ρ
(5)
2 ) − 1

C(5)
2

· (<Ls2 > (4) + 1) =
= 600

2 · (1 − 0.77)− 1
1200/3600 · (13.6 + 1) = 25.20

M(5)
2 = 4

C(5)
2

·
[

T5
2 · (1 − ρ

(5)
2 ) + 1

2 · ρ
(5)
2 · T5

]
=

= 4
1200/3600 ·

[
600

2 · (1 − 0.77) + 1
2 · 0.77 · 600

]
= 3600.00

and, therefore, from Eq. (4.55), we have

<w (5)
s2 > = 1

2 ·
(√

(J(5)
2 )2 + M(5)

2 − J(5)
2

)
=

= 1
2 ·
(√

(25.20)2 + 3600.00 − 25.20
)

= 19.9 s

The results of this worked example are shown in Fig. 4.3, which shows that,
by the procedure adopted, it is possible to follow the behavior in time of the
development of the queue (increase and clearance) and of the time spent in the
system.
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4.2.2 Second Worked Example

If traffic demand is given as a time continuous function, the procedure described
in Sect. 4.2.1, implemented with the calculation steps Tk of reduced value (e.g.,
1 min), allows us to regularly follow the evolution of the system and to obtain the
description of the behavior of the intersection under general service conditions.

As an example of what we have just described, using the calculation code
‘Roundabout’ developed by M. Corradini in Visual Basic R©, where the above-
mentioned procedure is implemented, the case of a four-legged roundabout was
analyzed for traffic demands that have different behaviors for all of the entries. For
the first and second legs, the demand is parabolic; for the third and fourth legs, the
demand is sinusoidal; and the instants of beginning and end of the peaks and their
duration are different for each entry (See Fig. 4.4).

In addition, the time variation of matrix PO/D of the assumed traffic percent-
ages is such that entries 2 and 4 are, during the evolution of the system, always
undersaturated (See Fig. 4.5).

Figure 4.4 also shows the relationship Ci= Ci(t) obtained with the capacity
calculation performed for the scheme under examination.

With the examination of the behavior of the average number of users and average
times spent in the system, described in Figs. 4.6 and 4.7, respectively, it is possible
to follow all aspects of the evolution of the roundabout. Therefore, we can evaluate,
in particular, the effects that the time variation of traffic demand and, consequently
of capacity, have on the waiting phenomena that occur at each entry.

Fig. 4.4 Traffic demand and capacity versus time at the four legs of a roundabout
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Fig. 4.5 Traffic intensity (degree of saturation) versus time at the four legs of a roundabout

Fig. 4.6 The average number of users in the system versus time at the four legs of a roundabout
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Fig. 4.7 The average time spent in the system versus time at the four legs of a roundabout

4.3 Evaluation of Levels of Service

For the evaluation of Levels of Service (LOS) of at-grade unsignalized intersections,
we generally follow the indications of the American Highway Capacity Manual
(HCM) [2].

The Manual distinguishes six LOS, from A to F, based on quality levels of
circulation at the intersection, in descending order (A excellent; F very poor).

Among the variations introduced in the successive editions of the HCM, there is
also a different selection of the parameters relative to Levels of Service.

In the edition published in 1985, the statement of LOS is given on the basis
of intervals of reserve capacity RC = Ci – Qei (See Table 4.1), and it gives only
qualitative indications about delays.

Table 4.1 LOS, reserve capacity, and average delay according to HCM 1985

LOS Reserve capacity Average delay

A >400 zero or short
B 300–400 short
C 200–300 medium
D 100–200 high
E 0–100 very high
F <0 –
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Table 4.2 LOS and average time in the system according to HCM 1994–HCM 1997 and HCM
2000

HCM
94–HCM 97 HCM 2000

LOS
Average
delay (s)

Average
delay (s)

Average time spent
in the system (s)

A <5 <10 <5
B 5–10 10–15 5–10
C 10–20 15–25 10–20
D 20–30 25–35 20–30
E 30–40 35–50 30–40
F >45 >50 >45

In the editions published in 1994, 1997, and 2000, the Levels of Service are based
on the levels of acceptability of the waits by the users, according to the values shown
in Table 4.2.

Regarding the parameters shown in Table 4.2, we recall that “delay” means the
time w defined with Eq. (1.21) of Chap. 1.

In Table 4.2, according to HCM 2000, it is assumed to be systematically greater
than 5 s of the time spent in the system ws.

It is worth noting that the classifications of LOS on the basis of reserve capacity
RC or the waiting time are the same.

In fact, it is possible to demonstrate [3] that if we have a calculation procedure
of the time spent in the system, we can identify a bijective relationship between
the two parameters assumed to represent the Level of Service, and we can use that
relationship to deduce the value of one of the parameters after the value of the other
parameter is known.

Thus, for example, if the system is under steady-state conditions with Poissonian
arrivals and exponential waiting times, from Eqs. (3.17) and (3.3) of Chap. 3, we
immediately have,

E[ws] = 1

C · (1 − ρ)
= 1

C − Qe
= 1

RC
(4.58)

With Eq. (4.58), on the basis of the intervals of reserve capacity shown in
Table 4.1, we have the intervals of waiting times shown in Table 4.3.

For RC < 0, Eq. (4.58) loses significance (See Fig. 3.3 of Chap. 3) consis-
tently with the circumstance that, for RC ≤ 0, there are no statistical equilibrium
conditions for the system.

Table 4.4 shows the correspondence calculated under steady-state conditions
(RC > 0) in [4] between average times spent in the system E[ws] and reserve capac-
ity, starting with various formulas for the evaluation of E[ws] and with reference to
the intervals of reserve capacity shown in Table 4.1.
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Table 4.3 LOS, reserve capacity, and average time spent in the system according to Eq. (4.58)

Reserve Average time spent
LOS capacity in the system

A <400 <9
B 300–400 9–12
C 200–300 12–18
D 100–200 18–36
E 0–100 >36
F <0 –

Table 4.4 Reserve capacity and average time spent in the system according to various researchers

Average time spent in the system (s)

According to
Reserve According to Brilon and According to According to

LOS capacity Kremser Grossman Siegloch Mauro

A <400 <10 <10 <5 <10
B 300–400 10–12 10–15 5–9 10–15
C 200–300 12–15 15–25 9–15 15–22
D 100–200 15–20 25–45 15–30 22–44
E 0–100 >35 >45 >30 >44
F <0 – – – –

With the absence of steady-state conditions, because of saturation or oversatura-
tion of the entries (RC ≥ 0) and/or because of the short duration of the period Tk of
demand variation and/or capacity, a correspondence between reserve capacity and
average times spent in the system may be obtained by expressing the time-dependent
solutions as a function of RC instead of traffic intensity (degree of saturation) ρ.

Working in this way, it is possible to demonstrate that a reserve capacity RC
greater than 100 veh/h is associated with a time spent in the system smaller
than 40 s.

The threshold of 45 s given by the HCM 2000 for LOS E for at-grade unsignal-
ized intersections (See Table 4.2) is reached for values of RC of 75–80 veh/h (See
Fig. 4.8, [5]).

Anyway, under any condition of the system (steady-state or transient) in today’s
technical practice, in absence of specific alternative indications, we generally use
the classification elaborated by HCM 2000 for linear, unsignalized intersections.
According to this classification, the quality of the circulation at the intersection is
established on the basis of the level of acceptability by the users of the waits at
entries.

Specific studies of roundabouts have not been available. Therefore, the only
solution is to use the criterion of HCM 2000 described in Table 4.2 for roundabouts.
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Fig. 4.8 Reserve capacity, time spent in the system, and levels of service [5]

The evaluation of LOS for roundabouts is performed by assuming that the round-
about entry that is characterized by the worst LOS determines the LOS of the entire
intersection.

Finally, it is well known that short times are generally associated with tran-
sient conditions, so it is worth noting that the recording of the short times when
there are poor Levels of Service does not invalidate the suitability evaluation of the
intersection to perform its functions.

When this occurs, we must accurately evaluate the singular, actual situations on
a case-to-case basis.
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Chapter 5
Evaluation of Roundabout Reliability

The study of the performances of roundabouts in terms of capacity indices (See
Sect. 1.2) may be completed using further analysis in addition to the ones that we
presented in the previous chapters.

This occurs because the flows of the various legs (and the capacities that depend
on them) are random variables. In general, they are non-statistically independent.
Therefore, to evaluate reliability, that is to say the probability that the system does
not fail (in the specific case, that demand does not exceed the single entry capacity)
it is necessary to characterize the flows and their related values by means of their
probability functions or when these laws are not available, by coincise indices such
as means, variances, and covariances.

This chapter presents general criteria for the evaluation of reliability in each leg
based on the study of the performance function Z (Z = C – Qe or Z = C/Qe) and it
provides the analytical relations in the particular case in which capacity and demand
(and thus also Z) are normally distributed with means and variances known.

An approximated criterion is also provided to be used in cases in which the prob-
ability laws of capacities and demands, and thus of performance function Z, are
unknown or difficult to determine.

The worked examples developed to illustrate the method (and the many others
that have not been reported for the sake of brevity) show, as it was logical to expect,
that the two only indices normally used (Reserve Capacity and/or Rate of Capacity)
are not sufficient to ensure that the system does not fail.

When the mean of the Reserve Capacity and/or of the Capacity Rate does not
change, reliability depends on the level of uncertainty that affects the values in
question (dispersion around the mean values of the flows).

Regarding the threshold value to attribute to reliability, it must be stated that it
cannot be fixed in general terms, but it should be identified on a case-to case basis
in relation to the damage (excessive mean and global waiting times, safety decrease,
repercussions on the surrounding network) caused by the system failure.

The results presented in this chapter can help to analyze roundabouts in a better
and more rational way.

Finally, even other performance indices for roundabouts, as simple and total
capacity, can be expressed in a probabilistic way.

139R. Mauro, Calculation of Roundabouts, DOI 10.1007/978-3-642-04551-6_5,
C© Springer-Verlag Berlin Heidelberg 2010
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5.1 Reliability and Performance Functions

Consider a roundabout entry of capacity C, interested by an entering traffic
demand Qe.

To evaluate the reliability – intended as the value “Z” of the suitability of a system
to perform its function – it is natural to compare the values C and Qe.

The “Z” value, that is to say “performance function”, can be measured both with
the difference C – Qe and with the ratio C/Qe, which in the reliability theory ter-
minology [1] are indicated as reliability margin and reliability factor respectively:

Z = C − Qe (5.1)

Z = C/Qe (5.2)

Equations (5.1) and (5.2) are connected to the two most widely adopted round-
about capacity indices used to characterize service conditions: in fact, Eq. (5.1)
coincides with the reserve capacity (RC), whereas Eq. (5.2) is the reciprocal of the
rate of capacity when it is expressed in absolute terms (as we said in the previous
Sect. 1.2).

Therefore, once prefixed two given minimum values zmin and z′
min for the reli-

ability margin and reliability factor, the reliability condition of the system can be
written:

Z = C − Qe > zmin (5.3)

Z = C/Qe > z′
min (5.4)

Particularly, in the former value the limit zmin= 0 can be taken and in the latter
z′

min=1, so that the success condition is represented by

C − Qe > 0 (5.5)

C/Qe > 1 (5.6)

The complementary relations of Eq. (5.5) and Eq. (5.6) represent failure condi-
tions:

C − Qe < 0 (5.7)

C/Qe < 1 (5.8)

What has been expounded so far is the deterministic position of the problem.
Because of the random nature of the factors and relations on which traffic capac-

ity and traffic demand values depend, the previous values C and Qe can vary
randomly.
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Fig. 5.1 Probability density function (p.d.f.) examples of the performance function (random
variables Z)

Therefore, we consider C and Qe as random variables described by given proba-
bility laws or by adequate statistics, the above-mentioned relations must be suitably
modified to take this circumstance into account.

Thus, the values “Z” that are yielded by Eq. (5.1) and by Eq. (5.2) are also to be
considered, insofar as they are random variable functions, as random values.

Also, it should be considered that each entering traffic demand value Qe at an
entry of capacity C corresponds to a reliability value determination.

Assume, then, in the more general case, that the probability law of the random
variable “Z” (see Eqs. (5.1) and (5.2)) can be represented by the probability density
function, p.d.f., fZ (See Fig. 5.1).

On the basis of PZ probability, the fractiles zmin and z′
min can be determined: this

equals to let

PZ = P {Z = C − Qe ≤ zmin} = FZ(zmin) (5.9)

PZ = P
{
Z = C/Qe ≤ z′

min

} = FZ(z′
min

) (5.10)

where FZ(Z) are the distribution functions (c.d.f.) of the random variable “Z” in
these two cases, Z = C – Qe and Z = C/Qe.

PZ is then the probability of the event {entry unreliability}, given that zmin and
z′

min are minimum values prefixed by the reliability value.
The complementary event probability {entry reliability} obviously results in

1 − PZ = P {Z = C − Qe > zmin} = 1 − FZ(zmin) (5.11)

1 − PZ = P
{
Z = C/Qe > z′

min

} = 1 − FZ(z′
min) (5.12)

The “failure” event and the complementary “success” event probabilities are then
obtained respectively (See Fig. 5.2):

Pf = P {Z = C − Qe ≤ 0} = FZ(0)
Pf = P {Z = C/Qe ≤ 1} = FZ(1)

}
failure (5.13)
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Fig. 5.2 Examples of the identification of the probability of “failure” and “success” events

A = 1 − Pf = P {Z = C − Qe > 0} = 1 − FZ(0)
A = 1 − Pf = P {Z = C/Qe > 1} = 1 − FZ(1)

}
success (5.14)

From now on, the probability 1 – Pf associated with the “success” event will be
briefly indicated by reliability A. In particular, with reference to the performance
variable Z = C – Qe, if fCQe (c,qe) is the combined p.d.f of C and Qe, for Eq. (5.13)
it results that:

Pf = P(Z ≤ 0) =
∫

D

fCQe (c,qe)dc dqe (5.15)

In Eq. (5.15) D is the unsafe region, where the performance function Z = C −
Qe takes values Z ≤ 0 (See Fig. 5.3 for (C, Qe) ≥ 0). In other words, according to
Eq. (5.15), the volume subtended by fCQe(c,qe) in correspondence with the region
D gives the value Pf.

Fig. 5.3 Graphic
identification of the unsafe
region
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In conclusion, the problem of the evaluation of a roundabout reliability refers, in
its general formulation, to the thorough probabilistic characterization of the values
that the entry flows Qe can take and to the entry capacity C.

However, as it will be demonstrated in the following discussion, when this thor-
ough characterization is not available, Level 1 reliability methods can be performed
on the basis of statistical estimations of the expected value and of the standard
deviation of the random variables Qe and C, that is to say using only one mea-
surement of the random variability of the values in question (the standard deviations

sQe =
√

VAR
[
Qe
]

and sC = √
VAR [C] , once the mean values E[Qe] and E[C]

are known).

5.2 General Calculation Procedure of Reliability

Adopting Eq. (5.1), Z = C − Qe as a performance variable for a common entry, if C
and Qe are random variables that are statistically independent, with the calculation
rules for double integrals from Eq. (5.15) the two following equivalent expressions
are obtained for Pf

Pf =
+∞∫

0
fC(c)[1 − FQe(c)]dc

Pf =
+∞∫

0
fQe(q)FC(q)dq

(5.16)

where fC(·) and fQe(·) are the p.d.f. respectively of C and Qe, and Fc(·) and FQe(·)
are the c.d.f. respectively of C and Qe.

To prove Eq. (5.16) we start from Figs. 5.4 and 5.5.

Fig. 5.4 Tails of p.d.f. of demand Qe and of capacity C (generic p.d.f.)
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Fig. 5.5 Tails of p.d.f. of demand Qe and of capacity C (generic p.d.f.)

Figure 5.4 shows the tails of the p.d.f. of demand Qe and of capacity C (generic
p.d.f.).

The probability that demand Qe is bigger than an assigned value c of Capacity C
is equal to

P(Qe > c) = 1 − FQe(c)

The probability that capacity C falls in the neighborhood of c is equal to

P(c − dc < C ≤ c) = fc(c)dc

The “failure” probability when C is equal to a given c is

dPfc = [1 − FQe(c)] · fc(c)dc

For all the possible c, it results

Pf =
+∞∫

0

[1 − FQe(c)] · fc(c)dc

which is Eq. (5.16).
Dually (See Fig. 5.5)

P(C ≤ q) = Fc(q)

P(q < Qe ≤ q + dq) = fQe (q)dq

dPfQe
= fQe(q)Fc(q)dq
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For all the possible q it results

Pf =
+∞∫

0

fQe (q)Fc(q)dq

which is Eq. (5.16).
From Eq. (5.16), if C and Qe are normally distributed, for Pf it results [1]

Pf = 1√
2π

−β∫

−∞
e−t2/2dt = 0.5 − erf(β) (5.17)

where erf(·) is the error function and β is the safety index (inverse of the coefficient
of variation of the performance function Z)

β = E[Z]/
√

VAR[Z] (5.18)

with E[Z] and
√

VAR [Z] as the expected value and the standard deviation of the
performance function Z respectively (Eq. (5.1)).

If C is normally distributed with mean C and variance σ 2
C and Qe is distributed,

for example, exponentially with parameter α, for Pf it results that

Pf = F

(

− C

σc

)

+ exp{ 0.5α2σ 2
c − αC}

[

1 − F

(

− C

σc
+ ασ c

)]

(5.19)

where F(·) is the c.d.f. of the standardized normal distribution.

5.2.1 A Worked Example

For this example, the capacity formulation of SETRA [2] is adopted.
In Fig. 5.6 a roundabout with flow indications and geometrical features for the

calculation of C capacity is schematically reported.
For all legs we have:

– entry width ENT = 4.00 m
– splitter island SEP = 6.00 m

The circulatory roadway width is ANN = 8.00 m.
For an entry capacity “i” the formulation selected gives

C = (1330 − 0.7 · Qdi) · [1 + 0.1 · (ENT − 3.50)] (5.20)
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Fig. 5.6 Geometrical layout of the roundabout

where the disturbing flow Qdi is

Qdi =
(

Qci + 2

3
Q′

ui

)
[1 − 0.085 · (ANN − 8)] (5.21)

Qci is the circulating flow in front of the leg considered, Qui is the traffic exiting the
leg i selected

Q′
ui = Qui

15 − SEP

15
(5.22)

With the given values of ENT, SEP and ANN, Eqs. (5.20), (5.21) and (5.22) yield

C = 1397 − 0.735 · Qdi (5.23)

with

Qdi = Qci + 0.4 · Qui (5.24)
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Table 5.1 Matrix O/D of the mean values E[Qij] in (pcu/h) and variance VAR[Qij] in (pcu/h)2

D 1 2 3 4 Qei
O

1 – 200 150 250 600
– 2500 2000 2200 6700

2 300 – 100 150 550
6400 – 1800 900 9100

3 300 200 – 100 600
3000 2500 – 1800 7300

4 150 350 200 – 700
1500 9000 2500 – 13000

Qui 750 750 450 500 –
10900 14000 6300 4900 –

Supposing that, on the basis of experimental observations, mean flow E[Qij] and
variance VAR[Qij] of all the turnings have been estimated and that these flows result
in being statistically independent.

These data are reported in the matrix O/D of Table 5.1. In Table 5.1 in each
square ij the top value is the mean, and the bottom one is the variance associated
with the turning from leg i into leg j. Table 5.1 also shows the estimated values of
the mean and variance for the overall flows for each leg at entry Qei and at exit Qui.
The flows are expressed in pcu/h.

Mean and Variance of the Circulating Flows Qci

The circulating flows Qc are linear functions of traffic demand expressed as turning
flows. For example, for entry 1 it results in Qc1 = Q24 + Q23 + Q34.

On the basis of the properties of mean E[·] and variance VAR[·] operators, when
applied to random variables statistically independent and with the data of Table 5.1,
it gives

E[Qc1] = E[Q24] + E[Q23] + E[Q34] = 150 + 100 + 100 = 350 pcu/h (5.25)

VAR[Qc1] = VAR[Q24] + VAR[Q23] + VAR[Q34] =
= 900 + 1800 + 1800 = 4500 (pcu/h)2 (5.26)

The coefficient of variation (cv)1 is

(cv)1 = √
VAR[Qc1]/E[Qc1] = 67/350 = 0.192 (5.27)

Doing the same for the other entries, the values of the mean and variance for the
circulating flows in Table 5.2 can be obtained.
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Table 5.2 Statistics of circulating flows, disturbing flows, and entry capacities. Safety index and
reliability index values

E[Qci]
(pcu/h)

E[Qdi]
(pcu/h)

E[Ci]
(pcu/h)

Average reserve
capacity

VAR[Qci] VAR[Qdi] VAR[Ci] E[C]-E[Qe]
Entry (pcu/h)2 (pcu/h)2 (pcu/h)2 (pcu/h) βi A

1 350 650 920 320 3.19 0.999
4500 6244 3373

2 550 850 772 222 1.90 0.971
6300 8540 4613

3 700 880 750 150 1.23 0.897
13000 14008 7567

4 450 650 919 219 1.55 0.939
6300 7084 7084

Mean and Variance of disturbing flows Qdi

For entry 1 Eq. (5.24) gives Qd1 = Qc1 + 0.4 · Qu1 where

Qu1 = Q21 + Q31 + Q41.

On the basis of the above-mentioned properties of the mean and variance
operators and with the values of Table 5.1, it results in:

E[Qd1] = E[Qc1] + 0.4 · (E[Q21] + E[Q31] + E[Q41]) =
= 350 + 0.4 · (300 + 300 + 150) = 650 pcu/h

(5.28)

VAR[Qd1] = VAR[Qc1] + 0.4
2 · (VAR[Q21] + VAR[Q31] + VAR[Q41]) =

= 4500 + 0.16 · (6400 + 3000 + 1500) = 6244 (pcu/h)2

(5.29)
In this case, the coefficient of variation equals to

(cv)1 = √
VAR[Qd1]/E[Qd1] = 79/650 = 0.122 (5.30)

Repeating the calculation for the other entries, the disturbing flow statistics
reported in Table 5.2 can be determined.

Mean and Variance of Flow Capacities Ci

For entry 1, with Eq. (5.23), since the relation between Ci and Qdi is linear and with
the above-mentioned values calculated for Qdi moments, it results that

E[C1] = 1397 − 0.735E[Qd1]=
= 1397 − 0.735 · 650 = 920 pcu/h

(5.31)
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VAR[C1] = 0.735
2 · 6244 = 3373 (pcu/h)2 (5.32)

(cv)1 = 58/920 = 0.063 (5.33)

For the other entries, the capacity moments reported in Table 5.2 can be
determined in the same way.

Reliability Calculation

For entry 1, the performance function (5.1) Z1 is on average equal to

E[Z1] = E[C1] − E[Qe1] = 920 − 600 = 320 pcu/h
VAR[Z1] = VAR[C1] + VAR[Qe1] = 3373 + 6700 = 10073 (pcu/h)2

It follows that

β1 = E[Z1]√
VAR[Z1]

= 320√
10073

= 3.19

and thus

erf(β1) = erf(3.19) = 0.499.

With Eq. (5.17) reliability A for entry 1 on the basis of Eq. (5.14) equals to

A = 0.5 + erf(3.19) = 0.999.

Table 5.1 shows the reliability values calculated for the remaining entries to
the roundabout considered. The present example has been carried out using the
hypotheses of mutual statistical independence among entering flows. If this circum-
stance does not occur, it is also necessary to take into consideration the covariance
cov[(·);(·)] of statistically dependent flows as shown below.

For example, with reference to entry 1, suppose that the elaboration of experi-
mental data traffic shows the mutual statistical dependence among the circulating
flows Q24; Q23; Q34 and among Q21; Q31; Q41, so to obtain the values of Table 5.3
for the covariances (the Qij flows are expressed in pcu/h).

Table 5.3 Values of the cov[(·);(·)] in (pcu/h)2

Qij Q23 Q31 Q34 Q41
Qij

Q21 3500 2000
Q31 1800
Q23 1800
Q24 1000 1100
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While E[Qc1] remains equal to Eq. (5.25), with the values of Tables 5.1 and 5.3,
the VAR[Qc1] is, with respect to Eq. (5.26), thus modified:

VAR
[
Qc1

] = VAR
[
Q24

]+ VAR
[
Q23

]+ VAR
[
Q34

]+
+2

(
cov

[
Q24;Q23

]+ cov
[
Q24;Q34

]+ cov
[
Q23;Q34

]) =
= 900 + 1800 + 1800 + 2 · (1000 + 1100 + 1800) = 12300(pcu/h)2

(5.26′)

For the disturbing flow Qd1 the same value yielded by Eq. (5.28) is obtained for
the mean E[Qd1], while for the calculation of VAR[Qd1] it is necessary to know the
cov[(Qc1);(Qu1)], as well as the covariances of Table 5.3.

Suppose that for cov[(Qc1);(Qu1)] it results, on the basis of traffic measurement
treatment, cov[(Qc1);(Qu1)]=13000 (pcu/h)2. With the values of Tables 5.1 and 5.3,
it is obtained:

VAR
[
Qu1

] = VAR
[
Q21

]+ VAR
[
Q31

]+ VAR
[
Q41

]+
+2

(
cov

[
Q21;Q31

]+ cov
[
Q21;Q41

]+ cov
[
Q31;Q41

]) =
= 6400 + 3000 + 1500 + 2 · (3500 + 2000 + 1800) =
= 25500(pcu/h)2

(5.34)

VAR[Qd1] = VAR[Qc1] + 0.4
2 · VAR[Qu1] + 2 · 0.4 · cov[Qc1;Qd1] =

= 12300 + 0.16 · 25500 + 2 · 0.4 · 13000 = 26780 (pcu/h)2 (5.35)

With Eq. (5.35) and with Eq. (5.28), on the basis of Eq. (5.20), for entry 1
capacity it is obtained that:

E[C1] = 1397 − 0.735E[Qd1] = 1397 − 0.735 · 650 = 920 pcu/h (5.36)

VAR[C1] = 0.735
2 · VAR[Qd1] = 0.735

2 · 26780 = 14467 (pcu/h)2 (5.37)

In the end, with E[Qe1]= 600 pcu/h (See Table 5.1) for the performance function
Z1 it results:

E[Z1] = E[C1] − E[Qe1] = 920 − 600 = 320 pcu/h (5.38)

VAR[Z1] = VAR[C1] + VAR[Q1] = 14467 + 6700 = 21167 (pcu/h)2 (5.39)

Thus

β1 = E[Z1]√
VAR[Z1]

= 320

145.5
= 2.20 (5.40)

and for reliability A it results (See Eqs. (5.14) and (5.17))

A = 0.5 + erf(β) = 0.5 + erf(2.20) = 0.986. (5.41)
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5.3 Approximated Calculation Procedure of Reliability

This procedure is exclusively based on the knowledge of the mean value and
on only one measurement of the random variability (generally, variance or stan-
dard deviation) of the values involved: it can thus be considered an approximated
approach to evaluate reliability compared to the criterion illustrated in the previous
section.

Bearing in mind the meaning and the definition of mean value and variance,
this method could be called the two-moment method. The use of this approximated
method requires the introduction of a safety index β which can be defined using
the performance function Z. This index is the number of standard deviations that
separate the mean value Z from the value Z = 0 which – by definition – corresponds
to the failure limit.

This method is structured as follows.
Calculate the mean and variance statistics E[Z] and VAR[Z] of the performance

variable (5.1)

Z = C − Qe (5.1)

starting from the known homologues of Qe and of C (E[Qe]; VAR[Qe];
[E[C];VAR[C]) with the relation (See Fig. 5.7)

E[Z] − βsz = 0 (5.42)

index β is calculated, and it provides the number of standard deviations sZ =√
VAR [Z] of Z that separate the mean value E[Z] from the value Z=0,

corresponding by definition to the limit that marks the failure condition (Z = 0 ↔
C = Qe ∀ Qe;C �= 0).

Fig. 5.7 Reliability index b
and p.d.f. of the performance
function Z
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By introducing the normalized performance function as

ξ = Z − E[Z]

sz
(5.43)

the “success” and “failure” events are, respectively, equivalent to the occurrence of
the inequalities:

– success

ξ ≥ −β (5.44)

– failure

ξ < −β (5.45)

In fact, putting in Eq. (5.13) a value of ξ ≥ −β yields Z, Z ≥ 0, that is to say that
C ≥ Qe, while, substituting ξ < −β yields Z < 0, which equals to C < Qe.

If the Z probability law, that is ξ, is known, each limit of β corresponds to a
well-determined value of the failure probability

Pf = P(ξ < −β = F( − β) (5.46)

A = 1 − Pf = 1 − F( − β) (5.47)

Even though the law distribution of the performance function Z is not known or
easily determinable, β can be considered as a coherent reliability value. In fact, the
tail of the most common probability density functions can be adequately approxi-
mated with an exponential function (suitably identified with two parameters A and
b, (A>0, b>0),

F(ξ) = A · exp(b · ξ) if F(ξ) =<< 1 (5.48)

For example, if Qe and C are both lognormally distributed, it can be demonstrated
that Eq. (5.48) becomes

F( − β) = 460 · exp( − 4.3β) (5.49)

and, thus,

A = 1 − F( − β) = 1 − 460 · exp( − 4.3 · β) (5.50)

It follows that as β increases, reliability also increases. With the most frequent
f.d.p. the values of β at least equal to 2 always indicate quite high probabilities that
Qe is systematically smaller than C, that is to say that the entry does not become
saturated.
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5.3.1 A Worked Example

Suppose we adopt as a capacity formulation the one presented in the 2000 edition
of the HCM [3] on the basis of which

C = Qcexp {−QcTc/3600}
1 − exp {−QcTf/3600} (pcu/h) (5.51)

For an assigned value of Qc it results

C = C(Tc;Tf) (5.52)

where Tc is the critical gap (s) and Tf is the follow-up time (s) (See Sect. 1.2).
We assume that Qc is known without doubt and that Tc and Tf are instead random

variables.
Using the linearization of Eq. (5.51) it can be demonstrated [4] that an approxi-

mated evaluation of the first order of E[C] and VAR[C] is yielded by

E[C] = C(E[Tc];E[Tf]) = Qc · exp{− QcE[Tc]/3600}

1 − exp{− QcE[Tf]/3600}
(pcu/h) (5.53)

VAR[C] = k2
1VAR[Tc] + k2

2VAR[Tf] + 2 · k1 · k2 · cov[Tc;Tf] (5.54)

where E[Tc]; E[Tf]; VAR[Tc]; VAR[Tf]; cov[Tc;Tf] have the usual meaning and for
k1 and k2 it results

k1 =
(

∂C

∂Tc

)

E[Tc];E[Tf]
= − Q2

c

3600
· exp{− QcE[Tc]/3600}

1 − exp{− QcE[Tf]/3600}
(5.55)

k2 =
(

∂C

∂Tf

)

E[Tc];E[Tf]
= − Q2

c

3600
· exp{− Qc(E[Tc] - E[Tf])/3600}

(1 − exp{− QcE[Tf]/3600})2
(5.56)

Assume therefore, for an entry for which Qc = 250 pcu/h, the following values
of the statistics of the random variables Tc and Tf:

E[Tc] = 4.4 s VAR[Tc] = 0.36 s2 cov[Tc; Tf] = 0.30 s2

E[Tf] = 2.9 s VAR[Tf] = 0.25 s2

With these values and with C=C(Tc ,Tf) given by Eq. (5.51), it is obtained for
Eqs. (5.53), (5.54), (5.55) and (5.56)
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k1 =
(

∂C
∂Tc

)

E[Tc];E[Tf]
= − 250

2

3600
· exp{− 250 · 4.4/3600}

1 − exp{− 250 · 2.9/3600}
= −70

k2 =
(

∂C
∂Tf

)

E[Tc];E[Tf]
= − 250

2

3600
· exp{− 250 · (4.4 − 2.9)/3600}

(1 − exp{− 250 · 2.9/3600})2
= −470

E[C] = 250 · exp{− 250 · 4.4/3600}

1 − exp{− 250 · 2.9/3600}
= 1010 pcu/h

VAR[C] = ( − 70)2 · 0.36 + ( − 470)2 · 0.25 + 2 · 0.30 · 32900 = 76729 (pcu/h)2

√
VAR[C] = 277 pcu/h

The coefficient of variation (cv) is equal, in this case, to

(cv) = √
VAR[C]/E[C] = 277/1010 = 0.27

If E[Qe] = 450 pcu/h and VAR[Qc] = 1500 (pcu/h)2 it is obtained for the
statistics of the performance function (5.1)

E[Z] = E[C] − E[Qe] = 1010 − 450 = 560 pcu/h

√
VAR[Z] = √

VAR[C] + VAR[Qe] = √
76729 + 1500 = 280 pcu/h

and thus, for β it results

β = 560

280
= 2.00

This value of β means high reliability values.
When it seems right to apply the approximation provided by Eq. (5.49) to this

case the value (Eq. (5.50)) obtained for A is, for example,

A = 1 − 460 exp {−4.3 · 2.00} = 0.92

5.4 Some Remarks

When the mean of the Reserve Capacity and/or of the Capacity Rate does not
change, reliability depends, on the level of uncertainty that affects the values in
question (dispersion around the mean values of the flows).

The role of the dispersions centered on the mean values E[Qe] and E[C] is evident
from the observation of the curves Pf = Pf(ωo) in Fig. 5.8. They can be obtained as
follows.
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Fig. 5.8 Pf = Pf(ωo) for the couples of values ((cv)c; (cv)Qe)

Expressed β as (Eq. (5.18))

β = E[C] − E[Qe]
√

VAR[C] + VAR[Qe]
= ωo − 1
√

ω2
o(cv)2

c + (cv)2
Qe

where (cv)c = √
VAR [C]/E [C] and (cv)Qe =

√
VAR

[
Qe
]
/E

[
Qe
]

are, respec-
tively, the capacity and demand coefficients of variation at an entry and ωo= E[C]/
E[Qe] the ratio among the means of the same ones, for Eq. (5.18) it results in

Pf = Pf(ωo;(cv)c;(cv)Qe)

Once fixed the values that form the couples ((cv)c; (cv)Qe) of the table, with them,
from Eq. (5.17), the 16 curves Pf = Pf(ωo) of Fig. 5.8 can be obtained.
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Figure 5.8 shows that:

– for high values of (cv)c, even increasing considerably ωo, it is not possible
to keep the failure probability within small values;

– for small values of (cv)c, the variability of Qe is significant (this is instead
unimportant for big values of (cv)c, that is to say with uncertain capacities).
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Note: Locators in boldface refer to Definitions of entries.

A
Acceleration phase, 11
Average

Length of queue, see number of users in the
queue

number of users (vehicles) in the queue, 13
See also State and Queue

number of users (vehicles) in the system,
13

See also State and Queue
time spent in the system, 13
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B
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C
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calculation at steady-state conditions,

17–36
exit and circle, 36
exit in presence of pedestrian crosswalks,
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French formula, 27–32
German formula, 32–34
HCM 2000 formula (USA), 34–36,

153–154
in presence of pedestrian crosswalks

Brilon, Stuwe and Drews formula, 42
CETE de l’Ouest formula, 41–43
Marlow and Maycock formula, 37–40

indices, 7–9, 21
rate, 9, 21

at entries (CRUe), 21
at the conflicting points, 21

reserve (RC) (absolute and percentage),
8–9

simple, 9, 52–56
SETRA formula, 145–147
Swiss formula, 19–22
total, 9, 52, 54–56
United Kingdom formula, 22–27

CETE de l’Ouest, 41–43
Circulatory roadway Capacity, 36

number of lanes, 8, 15–16, 21, 27, 32–34
Circle, see Circulatory roadway
Cumulative

arrival count, 67–70
departure count, 67–70

D
Deceleration phase, 11
Degree of saturation, 60–61
Delay, 1

geometric, 11
total, 11

Drews, 37, 41

E
Entry

oversaturation, 46–52, 121–134
See also Queue, deterministic analysis,

time-dependent analysis (solution)
Saturation, 46–52, 121–134

See also Queue, deterministic analysis,
time-dependent analysis (solution)

undersaturation, 107–121
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See also Queue, probabilistic analysis
Exit Capacity, 44
Erlang Law, 62

parameter k, 62
Exponential Law, 64, 65

F
Flow

circulating, 6, 7, 8
conflicting, 21
disturbing, 8
entering, 6, 8
exiting, 6, 8
pedestrian, 36–43

G
Gap

acceptance theory, 8
critical, 8, 32–35

Geometry of roundabout
configuration, 8, 44
French capacity formula, 28
Standards, see configuration
Swiss capacity formula, 20–21
TRRL capacity formula (United Kingdom),

23
GIRABASE, 27–32
Grossman, 136
Guichet, 27

H
Highway Capacity Manual, 34–35, 134–136,

153–154
Hollis, 100, 102–103

K
Kimber, 22, 100, 102–103
Kremser, 136

L
Level of Service (LOS), 134–137

M
Marlow and Maycock, 37
Mauro, 136
Measure of Effectiveness (MOE), 1

O
O/D matrix (origin/destination matrix), 3

See also Traffic, demand

P
Passenger car unit, 16, 21
Peak period, 74–85, 98–104
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